Co-integração da estratégia de negociação do par
Cointegration in Forex Pairs Trading.
Cointegration na troca de pares forex é uma ferramenta valiosa. Para mim, a cointegração é a base para uma excelente estratégia de negociação mecânica neutra do mercado que me permite lucrar em qualquer ambiente econômico. Se um mercado está em uma tendência de alta, tendência de baixa ou simplesmente se movendo de lado, a negociação de pares de divisas me permite colher ganhos durante todo o ano.
Uma estratégia de negociação de pares forex que utiliza cointegração é classificada como uma forma de negociação de convergência com base em arbitragem estatística e reversão para significar. Este tipo de estratégia foi popularizado por uma equipe de negociação quantitativa no Morgan Stanley na década de 1980, usando pares de ações, embora eu e outros comerciantes descobrirem que também funciona muito bem para negociação de pares de forex também.
Negociação de pares de Forex com base na cointegração.
O comércio de pares de Forex com base na cointegração é essencialmente uma estratégia de reversão para média. Declarado simplesmente, quando dois ou mais pares forex são cointegrados, significa que o spread de preços entre os pares de divisas separados tende a reverter ao seu valor médio consistentemente ao longo do tempo.
É importante entender que a cointegração não é correlação. A correlação é uma relação de curto prazo em relação a co-movimentos de preços. A correlação significa que os preços individuais se movem juntos. Embora a correlação seja dependente de alguns comerciantes, por si só é uma ferramenta não confiável.
Por outro lado, a cointegração é um relacionamento de longo prazo com co-movimentos de preços, nos quais os preços se movem juntos, mesmo dentro de certos intervalos ou spreads, como se estivessem amarrados. Descobri que a cointegração era uma ferramenta muito útil na troca de pares de forex.
Durante a minha troca de pares forex, quando o spread se alarga para um valor limiar calculado pelos meus algoritmos de negociação mecânica, eu "curto" o spread entre os preços dos pares. Em outras palavras, eu aposto que o spread reverterá em direção a zero devido à sua cointegração.
As estratégias básicas de negociação de pares de forex são muito simples, especialmente quando se utilizam sistemas de negociação mecânica: escolho dois pares de moedas diferentes que tendem a se mover de forma semelhante. Compre o par de moedas insuficientes e venda o par de desempenho. Quando a propagação entre os dois pares converge, eu fechar minha posição com lucro.
A troca de pares de Forex com base na co-integração é uma estratégia razoavelmente neutra para o mercado. Como exemplo, se um par de moedas cair, o comércio provavelmente resultará em uma perda no lado longo e um ganho compensatório no lado curto. Assim, a menos que todas as moedas e instrumentos subjacentes subitamente percam valor, o comércio líquido deve ser próximo de zero no pior cenário.
Do mesmo jeito, as negociações de pares em muitos mercados são uma estratégia de negociação de autofinanciamento, uma vez que o produto de vendas curtas às vezes pode ser usado para abrir a posição longa. Mesmo sem esse benefício, a troca de pares de divisas com cointegração ainda funciona muito bem.
Entendendo a co-integração para negociação de pares forex.
Cointegration é útil para mim na troca de pares forex porque me permite programar meu sistema de negociação mecânica com base em desvios de curto prazo dos preços de equilíbrio, bem como expectativas de preços a longo prazo, pelo que quero dizer correções e retorno ao equilíbrio.
Para entender como a negociação de negociação de pares de divisas orientadas pela cointegração, é importante primeiro definir a cointegração e depois descrever como ela funciona em sistemas de negociação mecânica.
Como eu disse acima, a cointegração refere-se à relação de equilíbrio entre conjuntos de séries temporais, como os preços de pares de divisas separados que, por si só, não estão em equilíbrio. Declarado no jargão matemático, a cointegração é uma técnica para medir a relação entre variáveis não estacionárias em uma série temporal.
Se duas ou mais séries temporais tiverem um valor de raiz igual a 1, mas sua combinação linear é estacionária, então é dito que estão cointegradas.
Como um exemplo simples, considere os preços de um índice de bolsa e seu contrato de futuros relacionado: embora os preços de cada um desses dois instrumentos possam vagar aleatoriamente em breves períodos de tempo, eles retornarão ao equilíbrio e seus desvios serão estacionário.
Aqui está outra ilustração, declarada em termos do exemplo clássico de "caminhada aleatória": digamos que há dois bêbados individuais caminhando para casa depois de uma noite de carousing. Vamos continuar a assumir que esses dois bêbados não se conhecem, então não há uma relação previsível entre seus caminhos individuais. Portanto, não há cointegração entre seus movimentos.
Em contraste, considere a idéia de que um bêbado individual está vagando para casa enquanto acompanha seu cão em uma coleira. Neste caso, há uma conexão definitiva entre os caminhos dessas duas criaturas pobres.
Embora cada um dos dois ainda esteja em um percurso individual durante um curto período de tempo, e mesmo que um dos pares possa aleatoriamente levar ou atrasar o outro em qualquer ponto no tempo, ainda assim, eles sempre serão encontrados juntos. A distância entre eles é bastante previsível, pelo que o par é considerado cointegrado.
Voltando agora a termos técnicos, se houver duas séries temporais não estacionárias, como um conjunto hipotético de pares de moeda AB e XY, que se tornam estacionários quando a diferença entre eles é calculada, esses pares são chamados de série de primeira ordem integrada - também ligue para uma série I (1).
Mesmo que nenhuma dessas séries permaneça em um valor constante, se houver uma combinação linear de AB e XY estacionada (descrita como I (0)), então AB e XY são cointegradas.
O exemplo simples acima consiste em apenas duas séries temporais de pares de forex hipotéticos. No entanto, o conceito de cointegração também se aplica a séries temporais múltiplas, usando ordens de integração mais altas ... Pense em termos de um bêbado errante acompanhado por vários cães, cada um em uma coleira de comprimento diferente.
Na economia do mundo real, é fácil encontrar exemplos que mostrem cointegração de pares: renda e gastos, ou a dureza das leis criminais e o tamanho da população prisional. Na troca de pares forex, meu foco é capitalizar a relação quantitativa e previsível entre pares de moedas cointegradas.
Por exemplo, vamos assumir que estou assistindo esses dois pares de moeda hipotéticos cointegrados, AB e XY, e a relação cointegrada entre eles é AB & # 8211; XY = Z, onde Z é igual a uma série estacionária com uma média de zero, isto é, eu (0).
Isso parece sugerir uma estratégia de negociação simples: quando AB - XY & gt; V e V é o meu preço de gatilho limiar, então o sistema de negociação de pares forex venderia AB e compraria XY, uma vez que a expectativa seria AB para diminuir o preço e XY para aumentar. Ou, quando AB-XY & lt; - V, eu esperaria comprar AB e vender XY.
Evite a regressão espúria na troca de pares de forex.
No entanto, não é tão simples como sugeriria o exemplo acima. Na prática, um sistema de negociação mecânica para troca de pares de forex precisa calcular a cointegração em vez de apenas confiar no valor R-quadrado entre AB e XY.
Isso ocorre porque a análise de regressão normal é baixa ao lidar com variáveis não estacionárias. Provoca a chamada regressão espúria, o que sugere relacionamentos entre variáveis, mesmo quando não existe.
Suponhamos, por exemplo, que eu regredisse 2 séries temporais de "caminhada aleatória" separadas uma contra a outra. Quando eu teste para ver se há uma relação linear, muitas vezes eu vou encontrar valores altos para R-quadrado, bem como baixos valores de p. Ainda assim, não há relacionamento entre esses 2 passeios aleatórios.
Fórmulas e testes para cointegração na negociação de pares forex.
O teste mais simples para cointegração é o teste de Engle-Granger, que funciona assim:
Verifique que AB t e XY t sejam ambos I (1) Calcule a relação de cointegração [XY t = aAB t + et] usando o método de mínimos quadrados Verifique se os resíduos de cointegração e estão estacionários usando um teste de raiz de unidade como o Teste avaliado Dickey-Fuller (ADF).
Uma equação Granger detalhada:
I (0) descreve a relação de cointegração.
XY t-1 - βAB t-1 descreve a extensão do desequilíbrio longe do longo prazo, enquanto αi é tanto a velocidade como a direção em que a série temporal do par de moedas se corrige do desequilíbrio.
Ao usar o método Engle-Granger na negociação de pares forex, os valores beta da regressão são usados para calcular os tamanhos comerciais para os pares.
Ao usar o método Engle-Granger na negociação de pares forex, os valores beta da regressão são usados para calcular os tamanhos comerciais para os pares.
Correção de erros para cointegração em troca de pares forex:
Ao usar cointegração para negociação de pares de divisas, também é útil explicar como as variáveis cointegradas se ajustam e retornam ao equilíbrio de longo prazo. Então, por exemplo, aqui estão as duas séries temporais de pares de forex mostrados de forma autoregressiva:
Negociação de pares de Forex com base na cointegração.
Quando uso o meu sistema de negociação mecânica para negociação de pares de divisas, a configuração e a execução são bastante simples. Primeiro, acho dois pares de moedas que parecem ser cointegradas, como EUR / USD e GBP / USD.
Então, eu calculo os spreads estimados entre os dois pares. Em seguida, eu verificar a estacionaridade usando um teste de raiz unitária ou outro método comum.
Tenho certeza de que meu feed de dados de entrada está funcionando adequadamente, e eu deixo meus algoritmos de negociação mecânica criar os sinais comerciais. Supondo que eu tenha executado back-tests adequados para confirmar os parâmetros, finalmente estou pronto para usar cointegração na minha troca de pares forex.
Encontrei um indicador MetaTrader que oferece um excelente ponto de partida para construir um sistema de negociação de pares de divisas de cointegração. Parece um indicador Bollinger Band, no entanto, o oscilador mostra o diferencial de preços entre os dois pares de moedas diferentes.
Quando este oscilador se move em direção ao extremo alto ou baixo, indica que os pares estão se desacoplando, o que sinaliza os negócios.
Ainda assim, para ter certeza de sucesso, confio no meu sistema de comércio mecânico bem construído para filtrar os sinais com o teste Augmented Dickey-Fuller antes de executar os negócios apropriados.
Claro, qualquer pessoa que queira usar cointegração para a negociação de pares forex, ainda que não tenha as necessárias habilidades de programação, pode contar com um programador experiente para criar um consultor especialista vencedor.
Através da magia da negociação algorítmica, programo meu sistema de negociação mecânica para definir os spreads de preços com base na análise de dados. Meu algoritmo monitora os desvios de preços, então compra e vende automaticamente pares de moedas para reduzir as ineficiências do mercado.
Riscos a ter em conta ao usar cointegração com troca de pares forex.
O comércio de pares de Forex não é totalmente livre de riscos. Acima de tudo, eu tenho em mente que a negociação de pares forex usando a cointegração é uma estratégia de reversão média, que se baseia no pressuposto de que os valores médios serão os mesmos no futuro como eram no passado.
Embora o teste Augmented Dickey-Fuller mencionado anteriormente seja útil na validação das relações cointegradas para o comércio de pares de forex, isso não significa que os spreads continuarão a ser cointegrados no futuro.
Confio em fortes regras de gerenciamento de risco, o que significa que meu sistema de negociação mecânica sai de negociações não lucrativas se ou quando a reversão-a-média calculada é invalidada.
Quando os valores médios mudam, é chamado de deriva. Eu tento detectar a deriva o mais rápido possível. Em outras palavras, se os preços dos pares Forex previamente cointegrados começam a se mover em uma tendência em vez de reverter para a média previamente calculada, é hora de os algoritmos do meu sistema de negociação mecânica recalcular os valores.
Quando uso o meu sistema de negociação mecânica para negociação de pares de divisas, uso a fórmula autorregressiva mencionada anteriormente neste artigo para calcular uma média móvel para prever o spread. Então, eu saio do comércio em meus limites de erro calculados.
Cointegration é uma ferramenta valiosa para minha troca de pares forex.
O uso da cointegração na negociação de pares forex é uma estratégia de negociação mecânica neutra do mercado que me permite negociar em qualquer ambiente de mercado. É uma estratégia inteligente que se baseia na reversão, mas isso me ajuda a evitar as armadilhas de algumas das outras estratégias de negociação forex de reversão para média.
Devido ao seu uso potencial em sistemas de negociação mecânica rentáveis, a cointegração para troca de pares de divisas atraiu o interesse tanto de comerciantes profissionais como de pesquisadores acadêmicos.
Há muitos artigos recentemente publicados, como esse artigo de blog focado em quantos, ou essa discussão acadêmica sobre o assunto, bem como uma grande discussão entre os comerciantes.
Cointegration é uma ferramenta valiosa no meu comércio de pares forex, e eu recomendo que você olhe para ele mesmo.
21 respostas.
Muito bom artigo. É inspirador. Obrigado por escrevê-lo!
A correlação também é aplicada em ações (ações). Qual é a diferença? O processo acima pode ser aplicado às ações?
Sim, o mesmo processo pode ser aplicado aos estoques, bem como aos derivados. Uma vez que existe um grande universo de estoques em comparação com os pares de divisas, deve haver uma maior quantidade de oportunidades potenciais para negociação. Com o poder de cruzamento dos sistemas comerciais de hoje, muitos conjuntos de relacionamentos podem ser examinados rapidamente, em tempo real. Cointegration também pode ser usado por comerciantes de opções; pode-se esperar que produza resultados como os populares spreads da Coca Cola-Pepsi, nos quais as relações de preços entre certos estoques / opções permitem que os comerciantes se envolvam em jogos de baixo risco com uma boa chance de ganhar.
Você troca intra dia ou durante semanas usando esta estratégia? Além disso, que linguagem de programação você recomendaria. R leva tempo para executar cálculos e se é comércio intra-dia, a latência entra em jogo.
A linguagem de programação não é importante para o comércio no final do dia. Qualquer linguagem importante como Perl, Python, C / C ++ e C # está bem. R pode ser extremamente rápido, mas retarda se for forçado a alocar dinamicamente a memória.
Eu troco usando gráficos diários, e eu permaneço na maioria dos negócios por alguns dias para algumas semanas. Shaun é um programador experiente, e sempre confio no seu julgamento para usar a melhor linguagem de programação para obter os melhores resultados para uma determinada estratégia de negociação. Na verdade, Shaun pode criar um programa bem equilibrado e vencedor para alavancar a co-integração e outros fatores também. Se você gostou de uma citação, entre em contato com ele diretamente na info @ onestepremoved.
Existe algum interesse em uma implementação deste para o MT4. Se você pode fornecer alguns detalhes sobre sua implementação desta estratégia no código, envie para czimmer @ onestepremoved.
Estou fazendo um pequeno projeto sobre estratégias de co-integração no FX para meu mestrado. Eu acredito que você executou testes de cointegração em muitos pares de moedas. Quais as quais você achou ser estatisticamente significativamente cointegrado?
Eu não acho que Eddie realmente correu os números. O artigo pretende ser um guia geral para o conceito, mas não é o ponto de ser uma estratégia de boa-fé.
1) USD / JPY e EUR / CHF.
2) EUR / PLN e EUR / HUF.
3) USD / TRY e USD / ZAR.
4) AUD / USD e NZD / USD.
5) EUR / NOK e EUR / SEK.
Eu sei que estes estão bastante correlacionados, mas isso não significa cointegração.
Existem bons pares de forex cointegrados:
Eu não acho que USDJPY / EURCHF seja um par cointegrado porque não haverá uma estratégia neutra do mercado.
Obrigado por compartilhar.
Alguém implementou um código de retorno usando a estratégia de reversão média?
Eu deveria ajustar os valores do pip entre dois pares de divisas?
Alguém adicionou custo de comissão ao código de retorno e obteve resultados lucrativos?
Tenho certeza de que alguém tem, mas não é algo em que você encontrará uma resposta óbvia em gráficos de curto prazo. Você pode encontrar cointegrações de longo prazo, mas a pesquisa não foi feita pela I & # 8217;
A única cointegração é entre EUR e CHF e entre AUD e NZD, uma vez que o único comércio e economia íntima entre esses países e os bancos centrais estão criando essa cointegração.
Não EUR e GBP?
Olá Eddie. Excelente artigo. Voltei a testar 10 anos de gráficos pensando e # 8221; Eu não posso ser a primeira pessoa a ter pensado nisso! & # 8221; quando encontrei este site. Muito obrigado por escrever isso. Eu não me sinto tão sozinho. 🙂 Apenas me perguntando qual corretor você usa ou você usa vários corretores. Obrigado pelo seu tempo.
Sinceramente Robert J. Armagost.
O corretor principal que eu uso é Pepperstone e STO (via TopTradr).
Olá Shaun eu tenho negociado esta estratégia manualmente. Tem software para automatizar isso? (Então, eu não tenho mais que acordar no meio da noite) Obrigado pelo seu tempo.
Não fora da prateleira, mas é algo que podemos construir. Me tire um email com suas regras de entrada e saída para obter uma estimativa. info @ onestepremoved.
Robert & # 8212; Obrigado pelo seu bom feedback. Shaun tem as ferramentas certas para implementar este tipo de estratégia de negociação, e eu concordo inteiramente com as recomendações do corretor, Agradeço novamente por comentar! EF.
Gekko Quant - Negociação Quantitativa.
Comércio Quantitativo, Arbitragem Estatística, Aprendizado de Máquinas e Opções Binárias.
Pós-navegação.
Arbitragem estatística & # 8211; Negociando um par cointegrado.
Na minha última publicação gekkoquant / 2018/12/17 / statistics-arbitrage-testing-for-cointegration-aumentated-dicky-fuller / Eu demonstrou cointegração, um teste matemático para identificar pares estacionários onde a propagação por definição deve ser reversa média.
Nesta publicação, pretendo mostrar como negociar um par cointegrado e continuarei a analisar as ações Royal Dutch Shell A vs B (sabemos que eles estão cointegrados da minha última publicação). Negociar um par cointegrado é direto, sabemos a média e variância da propagação, sabemos que esses valores são constantes. O ponto de entrada para uma stat arb é simplesmente procurar um grande desvio para longe da média.
Uma estratégia básica é:
Se spread (t) & gt; = Diferença média + 2 * Desvio padrão, então vá curto Se propagação (t) & lt; = Distribuição média & # 8211; 2 * Desvio padrão, então vá Long.
Se spread (t) & gt; = nDay Moving Average + 2 * nDay Rolling Desvio padrão, então vá Curto Se spread (t) & lt; = nDay Moving Average & # 8211; 2 * nDay Rolling Desvio padrão, então vá longo.
Se spread (t) & lt; = spread médio + 2 * std AND spread (t-1) & gt; Distribuição média + 2 * Std Se propagação (t) & gt; = Distribuição média & # 8211; 2 * Std AND spread (t-1) & lt; Mean Spread & # 8211; 2 * Std Advantage é que só trocamos quando vemos a reversão média, onde, como os outros modelos esperam a reversão média em um grande desvio da média (a propagação é explodida?)
Esta publicação analisará a média móvel eo modelo de desvio padrão de rolamento para as ações Royal Dutch Shell A vs B, usará a relação de cobertura encontrada na última publicação.
Sharpe Ratio Shell A & amp; B Stat Arb Shell A.
Razão Annual Sharpe (Rf = 0%):
Shell A & amp; B Stat Arb 0.8224211.
Shell A 0.166307.
O stat arb tem uma relação de Sharpe superior ao simplesmente investir na Shell A. De uma primeira olhada, a proporção de sharpe de 0,8 parece decepcionante, no entanto, uma vez que a estratégia gasta a maior parte do tempo fora do mercado, terá uma baixa anualização proporção de sharpe. Para aumentar a proporção de sharpe, pode-se olhar para negociar freqüências mais altas ou ter pares de portfólio de modo que mais tempo seja gasto no mercado.
22 pensamentos sobre & ldquo; Arbitragem estatística & # 8211; Negociando um par cointegrado & rdquo;
Isso também significa que, quando identificado, a divergência máxima eu posso tomar posição em derivadas, como opções?
- opção de chamada de ATM no primeiro estoque.
- Opção de compra de compra no segundo.
ou com um BacKSpreadCall no primeiro e um BackSpreadPut no segundo para que eu possa definir as proteções e posso rolo se eles sairem do controle & # 8230;
As posições curtas devem ser dinheiro ATM ou levemente OTM na minha opinião.
Sobre o que você pensa?
Você tentou usar a abordagem de teste de Johansen para realizar um teste mais rigoroso da cointegração? O que você acha de combinar Engle-Granger com Johansen?
A propagação no acima não oscila em torno dele significa, idealmente, um par cointegrado deve trocar de lado, de forma não aberta, como mostrado acima. O seu artigo foi perfeito na cointegração adequada que você demonstrou. mas esta propagação não é uma propagação perfeita.
Eu concordo 100% com você.
No entanto, para fins práticos, desde que a reversão média ocorra mais rapidamente do que as mudanças médias, então você vai fazer bem.
Eu acho que é algo que eu perdi, como quantificar a velocidade de semi-vida / reversão.
Por favor, note que, na demonstração acima, o período de retrocesso é de 90 dias. Isso é bastante curto. Escolher 200 dias resultará em uma direção menos sensível / de mudanças. Provavelmente aumentará o tamanho das bandas de desvio padrão e resultará em menos negócios por ano. Isso geralmente resulta em uma proporção Sharpe mais baixa.
Postagem muito interessante. Adoraria ver a implementação em uma cesta de pares.
Eu faço algumas mudanças no seu programa para calcular as bandas bollinger e eu quero saber por que você colocou o desvio Padrão para a direita? (movingStd = rollapply (spread, lookback, sd, align = & # 8221; right & # 8221 ;, na. pad = TRUE))
OK, obrigado por responder!
Seu blog me dá a chance de implementar e desenvolver mais rapidamente minha estratégia de arbítrio estatístico.
Eu vou testar diferentes modelos de arbitragem estatística. Eu mantenho todos os visitantes no circuito!
No seu programa, o efeito martingale não está aqui. Como posso adicionar esse efeito?
Estou executando meus backtests com diferentes programas (Excel, R et ProRealTime (uma plataforma francesa)) e, para fazer alguma comparação, preciso adicionar o efeito martingale.
Obrigado pelo esclarecimento. Pelo mesmo argumento, rollmean deve ter o mesmo: rollmean (spread, lookback, na. pad = TRUE, align = 'right')
Com esta nova modificação, a relação Sharpe cai drasticamente ...
Coisas boas!! Penso que existem dois erros no seu código, no entanto. O primeiro é o cálculo da média móvel. Você esqueceu de ajustar o parâmetro de alinhamento para & # 8220; direita & # 8221; (como você faz para o desvio padrão). A função usa o padrão & # 8220; center & # 8221; e seus dados & # 8211; A propagação e a média móvel não estão alinhadas. Você também pode ver isso da trama. A média móvel termina 45 dias antes da propagação. O segundo bug está no cálculo dos retornos comerciais. Eu acho que você deveria retornar no dia seguinte quando entramos na posição no preço de fechamento.
Obrigado pelo seu código elegante. Notei que sua linha de código:
é destinado a aplicar a função shortPositionFunc a (-1 * aboveUpperBand + belowMAvg).
No entanto, a função shortPositionFunc leva dois argumentos x e y.
Existe algum erro de digitação no código?
Obrigado pelo seu esclarecimento!
Obrigado Gekko pelo código de resposta. É muito útil. Um par de comentários abaixo:
1) Outro leitor já comentou sobre isso acima. moveAvg precisa ser alterado adicionando align = "right" para ter o primeiro número de avg em movimento no dia 90:
movingAvg = rollmean (spread, lookback, align = "right", na. pad = TRUE)
2) uma vez que entramos em negociações no final do dia, o retorno na data de negociação não deve contar. podemos simplesmente deslocar cada elemento no vetor "posições" para baixo usando a função "shift" na biblioteca taRifx.
Além disso, não acredito que o retorno diário é (aRet - stockPair $ hedgeRatio * bRet). Imagine se você tivesse um grande índice de cobertura, ou seja, se o estoque A tiver um preço de US $ 100 e o estoque B for de US $ 10, então o hedgeRatio ficaria no bairro de 10. Como aRet e bRet estão em%, a fórmula não trabalhos. O retorno diário deve ser aRet - bRet * (relação entre relação dólar neutro versus relação hedge).
#Calculate spread daily ret.
DailyRet & lt; - aRet - bRet * hedgeRatioOVERdollarNeutralRatio.
tradingRet & lt; - dailyRet * shift (posições, -1)
Estou à procura de novas estratégias de negociação de par de equidade que melhorem a abordagem de co-integração padrão (por exemplo, comecei a procurar o par de negociação com copulas, o que ainda parece uma alternativa instável e instável à cointegração). Você tem algum artigo novo para me sugerir? Muito obrigado e felicidades pelo excelente blog.
A segunda metade do livro passa por muitas técnicas mais avançadas para proteger um portfólio / encontrar pares estacionários.
Estou um pouco confuso nesta etapa.
quando traçei as longas Publicações e Pequenos Posicionamentos juntamente com a propagação, bandas e linhas de média móvel encontradas, então há sinais longos consecutivos e sinais curtos. De acordo com o meu entendimento.
longPostions & lt; - se spread for abaixo da banda baixa.
longExit & lt; - se o spread estiver acima de movAvg enquanto estiver longo.
ShortPostions & lt; - se spread for acima da banda alta.
shortExit & lt; - se o spread estiver abaixo de movAvg enquanto curto.
é a mesma coisa que seu código está fazendo. Por favor, ajude-me a entender essa parte.
Oi Gekko, eu leio os livros do EP Chan que fala sobre este assunto e eu um pouco confuso sobre a reserva média. Quando dois ativos estão cointegrados, estamos supondo que eles voltem ao seu alcance, mas sua média móvel ou sua média total em um período fixo? I & # 8217; m dando melhores resultados usando parâmetros estáticos do que usar bandas de bollinger. Vou mostrar-lhe uma imagem com minha dúvida. Prntscr / 51jofw Você poderia escrever outro artigo de reversão média! Obrigado por todos.
Oi Gekko. Grande Código. Você poderia explicar mais uma idéia por trás dessa função cappedCumSum? Não entendo o momento em que você está especificando duas variáveis de entrada, mas na função Reduzir () é apenas um parâmetro, & # 8211; é por causa de 0?
Há um erro. Seu algoritmo parece no futuro, o problema na função rollmean. Algoritmo usando a média móvel dos dias futuros para fechar a posição.
 Estratégia de negociação de par cointegração 
Attached é um par de troca de algo que permite ao usuário ativar / desativar diferentes testes para cointegração / reversão média da disseminação do par antes de fazer qualquer transação. Se você optar por ativar um dos testes, o valor do teste é gravado como um timeseries visível na página de resultados do backtest.
O par que está sendo negociado neste algo é o ETFs de petróleo e ouro (USO e GLD), mas você pode modificá-los conforme desejar.
Os 3 testes diferentes são:
- Efetivamente, este é um teste de raiz unitária para determinar se a propagação é cointegrada.
- Além disso, uma função está incluída mostrando como usar os valores críticos do teste ADF em vez do valor p.
- Este é o tempo calculado teoricamente, com base em uma janela histórica de dados, que levará para a propagação a significar - reverter metade de sua distância depois de ter divergido da média da propagação.
- Efetivamente, isso retorna um valor entre 0 e 1 que indica se uma série de tempo está em tendência ou retorno de média. Quanto mais próximo o valor é para 0,5 significa que o mais "aleatório" A série temporal se comportou historicamente. Os valores abaixo de 0,5 implicam que a série temporal é reversa média, e acima de 0,5 implica tendência. Quanto mais próximo o valor é de 0, implica níveis maiores de reversão média.
- A literatura comercial é conflituosa quanto à utilidade do expoente de Hurst, mas eu incluí, no entanto, e configurei a opção padrão para False no algo.
Os resultados de backtest abaixo incorporam dois desses testes:
Valor p-teste de ADF, calculado em uma janela de lookback de 63 dias (por exemplo, 3 meses), com um p-valor mínimo exigido de 0,20.
Para modificar os valores dos parâmetros dos testes, apenas olhe na função inicializar, para blocos de código que se parecem com isso. Veja como os parâmetros do p-valor do teste ADF são definidos:
Aqui, você vê como existe um dicionário definido chamado & # 39; stat_filter & # 39; que você pode usar para armazenar os parâmetros de cada teste. Primeiro crio outro dicionário dentro do & # 39; stat_filter & # 39; nomeado & # 39; adf_p_value & # 39; e então eu carrego em todos os valores dos parâmetros relevantes para o teste ADF que eu quero definir quando é aceitável entrar em um comércio. Esses 5 parâmetros exatos (por exemplo, chaves do dicionário) serão definidos para todos os testes, como você verá se você olha o código do algoritmo e observe o valor adf_critical, half_life, hurst_exponent são definidos seguindo-o. Os 5 parâmetros são:
& # 39; use: Boolean, True se você quiser que o algo use este teste.
Suporte para a Freqüência Intraday.
(Deixe-me saber se você encontrou problemas com isso, como eu não fiz tanto teste com ele como eu tenho com apenas freq diariamente)
Você também pode configurar este algoritmo para ser executado em dados intradiários minuciosamente. Por exemplo. construa um spread de pares usando preços de fechamento de barras de 15 min.
Primeiro, altere a variável context. trade_freq & # 39; do diário & # 39; para "intraday"
context. trade_freq = & # 39; diariamente & # 39; # & # 39; diariamente & # 39; ou intradiário & # 39;
Em seguida, procure este bloco de código abaixo na função inicializar () e especifique o & # 39; intraday_freq & # 39; valor para a frequência dos preços de fechamento a serem utilizados (bares de 15 minutos a. Em seguida, configure o & # 39; run_trading_logic & # 39; para ser com que frequência você deseja que a lógica seja aplicada aos dados do mercado. Eu escolhi 60 o que significa, execute esta lógica a cada 60 minutos, mas, se desejar, altere-a para 1, e a lógica será executada a cada minuto (cuidado, pois isso resultará em tempos de atraso muito longos).
A variável "check_exit_every_minute & # 39; pode ser definido como True se você quiser que a lógica seja executada a cada minuto se e somente se você estiver atualmente em um comércio. Por exemplo. ele verifica se você precisa sair do comércio a cada minuto em vez de aguardar os próximos N períodos (por exemplo, 60 minutos, conforme especificado na variável "run_trading_logic_freq" #)
O material deste site é fornecido apenas para fins informativos e não constitui uma oferta de venda, uma solicitação de compra ou uma recomendação ou endosso para qualquer segurança ou estratégia, nem constitui uma oferta de prestação de serviços de consultoria de investimento pela Quantopian. Além disso, o material não oferece nenhuma opinião em relação à adequação de qualquer segurança ou investimento específico. Nenhuma informação contida neste documento deve ser considerada como uma sugestão para se envolver ou abster-se de qualquer curso de ação relacionado ao investimento, já que nenhuma das empresas atacadas ou nenhuma das suas afiliadas está a comprometer-se a fornecer conselhos de investimento, atuar como conselheiro de qualquer plano ou entidade sujeito a A Lei de Segurança de Renda de Aposentadoria do Empregado de 1974, conforme alterada, conta de aposentadoria individual ou anuidade de aposentadoria individual, ou dar conselhos em capacidade fiduciária em relação aos materiais aqui apresentados. Se você é um aposentadorio individual ou outro investidor, entre em contato com seu consultor financeiro ou outro fiduciário não relacionado a Quantopian sobre se qualquer idéia, estratégia, produto ou serviço de investimento descrito aqui pode ser apropriado para suas circunstâncias. Todos os investimentos envolvem risco, incluindo perda de principal. A Quantopian não oferece garantias sobre a precisão ou integridade das opiniões expressas no site. Os pontos de vista estão sujeitos a alterações e podem ter se tornado pouco confiáveis por vários motivos, incluindo mudanças nas condições do mercado ou nas circunstâncias econômicas.
O mesmo algoritmo só começa 9 meses antes.
Obrigado pela participação. Eu notei que há uma função coint em statsmodels. tsa. stattools. Existe uma diferença significativa entre a função coint e a prova ADF? Algum sentido em usar ambos?
Eu anexei um backtest abaixo que tenta encontrar o pvalue de ambos os testes para cada par, todos os dias. Disclaimer: o que eu costumo pensar que está acontecendo em python na verdade não é.
Eu não tentei a função coint em stattools ainda, embora eu imagine que é muito semelhante. Eu apenas vi um rápido vislumbre do código, e ele efetivamente executa uma regressão da versão atrasada do timeseries de entrada em comparação com a versão desactualizada que é bastante semelhante ao ADF. A diferença pode estar na forma como os valores críticos são calculados.
O teste de Engle-Granger também é usado às vezes para testar a co-integração, mas eu ainda não procurei essa implementação.
O material deste site é fornecido apenas para fins informativos e não constitui uma oferta de venda, uma solicitação de compra ou uma recomendação ou endosso para qualquer segurança ou estratégia, nem constitui uma oferta de prestação de serviços de consultoria de investimento pela Quantopian. Além disso, o material não oferece nenhuma opinião em relação à adequação de qualquer segurança ou investimento específico. Nenhuma informação contida neste documento deve ser considerada como uma sugestão para se envolver ou abster-se de qualquer curso de ação relacionado ao investimento, já que nenhuma das empresas atacadas ou nenhuma das suas afiliadas está a comprometer-se a fornecer conselhos de investimento, atuar como conselheiro de qualquer plano ou entidade sujeito a A Lei de Segurança de Renda de Aposentadoria do Empregado de 1974, conforme alterada, conta de aposentadoria individual ou anuidade de aposentadoria individual, ou dar conselhos em capacidade fiduciária em relação aos materiais aqui apresentados. Se você é um aposentadorio individual ou outro investidor, entre em contato com seu consultor financeiro ou outro fiduciário não relacionado a Quantopian sobre se qualquer idéia, estratégia, produto ou serviço de investimento descrito aqui pode ser apropriado para suas circunstâncias. Todos os investimentos envolvem risco, incluindo perda de principal. A Quantopian não oferece garantias sobre a precisão ou integridade das opiniões expressas no site. Os pontos de vista estão sujeitos a alterações e podem ter se tornado pouco confiáveis por vários motivos, incluindo mudanças nas condições do mercado ou nas circunstâncias econômicas.
Ótimo Algo. É incrível. Muito útil.
Olá Justin / Tudo.
Você poderia sugerir como eu posso executar este algo em vários pares, em vez de apenas um par?
Tente fazer uma classe de negociação de pares que acompanhe toda a contabilidade para cada par dado. Veja os filtros de Kalman generalizados da David par em troca de algo para um ótimo exemplo de troca de pares com base em classe.
O material deste site é fornecido apenas para fins informativos e não constitui uma oferta de venda, uma solicitação de compra ou uma recomendação ou endosso para qualquer segurança ou estratégia, nem constitui uma oferta de prestação de serviços de consultoria de investimento pela Quantopian. Além disso, o material não oferece nenhuma opinião em relação à adequação de qualquer segurança ou investimento específico. Nenhuma informação contida neste documento deve ser considerada como uma sugestão para se envolver ou abster-se de qualquer curso de ação relacionado ao investimento, já que nenhuma das empresas atacadas ou nenhuma das suas afiliadas está a comprometer-se a fornecer conselhos de investimento, atuar como conselheiro de qualquer plano ou entidade sujeito a A Lei de Segurança de Renda de Aposentadoria do Empregado de 1974, conforme alterada, conta de aposentadoria individual ou anuidade de aposentadoria individual, ou dar conselhos em capacidade fiduciária em relação aos materiais aqui apresentados. Se você é um aposentadorio individual ou outro investidor, entre em contato com seu consultor financeiro ou outro fiduciário não relacionado a Quantopian sobre se qualquer idéia, estratégia, produto ou serviço de investimento descrito aqui pode ser apropriado para suas circunstâncias. Todos os investimentos envolvem risco, incluindo perda de principal. A Quantopian não oferece garantias sobre a precisão ou integridade das opiniões expressas no site. Os pontos de vista estão sujeitos a alterações e podem ter se tornado pouco confiáveis por vários motivos, incluindo mudanças nas condições do mercado ou nas circunstâncias econômicas.
Obrigado por compartilhar informações.
Clonei o problema de Justin, no entanto, quando eu executo um backtest, o desempenho permanece em 0% para a totalidade da janela do backtest.
Não fiz alterações no código fonte original.
Alguma idéia de por que isso ocorreria?
Você provavelmente executa algo no modo diário e só funciona em modo minuto.
Aqui está o meu último backtest do original da Justin, Lent algo, começou apenas 9 meses antes.
Vale a pena notar que, quando postei backtests, códigos e cadernos de pesquisa, a intenção é ilustrar uma metodologia e fornecer alguns modelos de código para estimular o processo de pensamento criativo da comunidade e salvar pessoas por algum tempo, fornecendo cut - e colar fragmentos de código que podem ser integrados em seu próprio código. De modo algum, estou publicando algo que foi completamente examinado e imediatamente investido na forma exata, por qualquer extensão da imaginação. Muitas vezes sugiro exemplos simples, em vez de excessivamente complexos, de modo a beneficiar um espectro mais amplo de leitores.
Vejo que você reconheceu que o backtest que postei acima parece falhar muito mal por um período de tempo diferente. Vemos isso muito com as estratégias que observamos, muitas das quais são superadas apenas no período de 2 anos nas competições que executamos. Tentamos trabalhar com o proprietário do algo e fornecer conselhos sobre o motivo pelo qual ele pode ter desdobrado nos diferentes prazos. Talvez você possa ampliar sua análise para me fornecer alguns conselhos sobre como melhorar essa estratégia? Talvez você tenha algumas recomendações sobre como incorporar um modelo de mudança de regime, que é muito provável que ajude uma estratégia como esta, dado o período de tempo que parece falhar (as crises de futuros financeiras / commodities que ocorreram no final de 2008). Talvez um modelo de mudança de regime de volatilidade estocástica possa ajudar significativamente. Se você tem experiência nesta área, eu tenho certeza de que a comunidade encontraria uma adição sólida para incorporar estratégias como essas para torná-las mais robustas. Eu sei que sim.
O material deste site é fornecido apenas para fins informativos e não constitui uma oferta de venda, uma solicitação de compra ou uma recomendação ou endosso para qualquer segurança ou estratégia, nem constitui uma oferta de prestação de serviços de consultoria de investimento pela Quantopian. Além disso, o material não oferece nenhuma opinião em relação à adequação de qualquer segurança ou investimento específico. Nenhuma informação contida neste documento deve ser considerada como uma sugestão para se envolver ou abster-se de qualquer curso de ação relacionado ao investimento, já que nenhuma das empresas atacadas ou nenhuma das suas afiliadas está a comprometer-se a fornecer conselhos de investimento, atuar como conselheiro de qualquer plano ou entidade sujeito a A Lei de Segurança de Renda de Aposentadoria do Empregado de 1974, conforme alterada, conta de aposentadoria individual ou anuidade de aposentadoria individual, ou dar conselhos em capacidade fiduciária em relação aos materiais aqui apresentados. Se você é um aposentadorio individual ou outro investidor, entre em contato com seu consultor financeiro ou outro fiduciário não relacionado a Quantopian sobre se qualquer idéia, estratégia, produto ou serviço de investimento descrito aqui pode ser apropriado para suas circunstâncias. Todos os investimentos envolvem risco, incluindo perda de principal. A Quantopian não oferece garantias sobre a precisão ou integridade das opiniões expressas no site. Os pontos de vista estão sujeitos a alterações e podem ter se tornado pouco confiáveis por vários motivos, incluindo mudanças nas condições do mercado ou nas circunstâncias econômicas.
Por que você escolheu o par USO e GLD? Acho que uma questão mais ampla é que você pode sugerir um processo para escanear através de uma cesta de ações e determinar se existem pares negociáveis? Eu assumo testes de cointegração seria um método, como ADF, como você usou. Seria bom se pudesse haver um algo para percorrer uma cesta de ações e determinar automaticamente o que faria "bom" pares.
Eu simplesmente escolhi USO / GLD para replicar este exemplo que usa esses mesmos tickers, a partir deste livro: amazon / Quantitative-Trading-Build-Algorithmic-Business / dp / 0470284889 /
Esse livro é uma introdução muito boa para stat arb pair trading (bem como seus outros livros). Todo o código no livro está em Matlab, então meu algo foi uma tentativa de implementá-lo em Python, em nosso backtester, e incorporar algumas das outras técnicas estatísticas descritas ao longo do livro.
Você está certo, que a seleção de um monte de pares potenciais é uma idéia de pesquisa razoável, mas você deve estar ciente da simples datamining. Você primeiro deseja determinar uma base econômica sensata para a qual os pares de ações devem ser vinculados (por exemplo, pares de ações no mesmo setor seriam pares razoáveis de ações para pesquisar). Escrever um algo no nosso backtester para realizar isso seria bastante direto: primeiro você pode usar nosso banco de dados fundamentais da Morningstar para capturar todos os estoques no setor de energia, talvez até mesmo filtrar os estoques de empresas de uma certa faixa de marketcap (por exemplo, Capture os estoques de energia), em before_trading_starts (), você encaminha sobre cada par de ações que computa o valor do PAD do ADF (ou outra estatística de cointegração), mantenha todos os pares de ações que atendam aos seus critérios e, em handle_data (), você apenas executa o aqueles que atendem aos critérios através de algo semelhante ao que eu compartilhei para entrar / sair dos negócios.
Eu ou alguém em nossa equipe aqui na Q pode tentar desenvolver um modelo para isso e compartilhá-lo.
Além disso, você pode ver esta publicação do fórum que mostra como desenvolver um único algo que negocia um portfólio de múltiplos pares:
É o algo backtest no primeiro comentário de David Edwards, aqui:
O material deste site é fornecido apenas para fins informativos e não constitui uma oferta de venda, uma solicitação de compra ou uma recomendação ou endosso para qualquer segurança ou estratégia, nem constitui uma oferta de prestação de serviços de consultoria de investimento pela Quantopian. Além disso, o material não oferece nenhuma opinião em relação à adequação de qualquer segurança ou investimento específico. Nenhuma informação contida neste documento deve ser considerada como uma sugestão para se envolver ou abster-se de qualquer curso de ação relacionado ao investimento, já que nenhuma das empresas atacadas ou nenhuma das suas afiliadas está a comprometer-se a fornecer conselhos de investimento, atuar como conselheiro de qualquer plano ou entidade sujeito a A Lei de Segurança de Renda de Aposentadoria do Empregado de 1974, conforme alterada, conta de aposentadoria individual ou anuidade de aposentadoria individual, ou dar conselhos em capacidade fiduciária em relação aos materiais aqui apresentados. Se você é um aposentadorio individual ou outro investidor, entre em contato com seu consultor financeiro ou outro fiduciário não relacionado a Quantopian sobre se qualquer idéia, estratégia, produto ou serviço de investimento descrito aqui pode ser apropriado para suas circunstâncias. Todos os investimentos envolvem risco, incluindo perda de principal. A Quantopian não oferece garantias sobre a precisão ou integridade das opiniões expressas no site. Os pontos de vista estão sujeitos a alterações e podem ter se tornado pouco confiáveis por vários motivos, incluindo mudanças nas condições do mercado ou nas circunstâncias econômicas.
Notei na seção do blog que você tem um caderno ao usar um otimizador bayesiano. Você saberia como posso puxá-lo para Q? está atualmente em github..thanks!
@Adam, no momento não é possível usar o otimizador bayesiano da postagem do blog no ambiente Q. Era mais uma prova de idéia de implementação de conceito. Como você mencionou, o código que usei para a publicação do blog está no github e você pode se inscrever para um teste com o SigOpt para obter um nome de usuário / API para trabalhar com ele em seu próprio ambiente python / zipline localmente. Oferecer alguns desses métodos alternativos de otimização como serviço é um conceito interessante que teremos que pensar quando desenvolvemos nossa plataforma Q no futuro. Obrigado pelo feedback!
O material deste site é fornecido apenas para fins informativos e não constitui uma oferta de venda, uma solicitação de compra ou uma recomendação ou endosso para qualquer segurança ou estratégia, nem constitui uma oferta de prestação de serviços de consultoria de investimento pela Quantopian. Além disso, o material não oferece nenhuma opinião em relação à adequação de qualquer segurança ou investimento específico. Nenhuma informação contida neste documento deve ser considerada como uma sugestão para se envolver ou abster-se de qualquer curso de ação relacionado ao investimento, já que nenhuma das empresas atacadas ou nenhuma das suas afiliadas está a comprometer-se a fornecer conselhos de investimento, atuar como conselheiro de qualquer plano ou entidade sujeito a A Lei de Segurança de Renda de Aposentadoria do Empregado de 1974, conforme alterada, conta de aposentadoria individual ou anuidade de aposentadoria individual, ou dar conselhos em capacidade fiduciária em relação aos materiais aqui apresentados. Se você é um aposentadorio individual ou outro investidor, entre em contato com seu consultor financeiro ou outro fiduciário não relacionado a Quantopian sobre se qualquer idéia, estratégia, produto ou serviço de investimento descrito aqui pode ser apropriado para suas circunstâncias. Todos os investimentos envolvem risco, incluindo perda de principal. A Quantopian não oferece garantias sobre a precisão ou integridade das opiniões expressas no site. Os pontos de vista estão sujeitos a alterações e podem ter se tornado pouco confiáveis por vários motivos, incluindo mudanças nas condições do mercado ou nas circunstâncias econômicas.
Obrigado Justin! Seria bom poder fazer esse tipo de otimização e / ou uma técnica de enxame de partículas em Q. :)
Eu acredito que encontrei uma lacuna na lógica de negociação. Na seção de filtragem estatística (linhas.
155-176) o algoritmo imediatamente sai se uma prova falhar. Isso evita que novos negócios sejam abertos, mas não faz nada para lidar com negócios existentes. Os negócios abertos permanecem abertos até que todos os testes estatísticos passem novamente e o algoritmo atinja sua lógica de saída padrão.
Por design, também devemos ter uma alta probabilidade de estar em um comércio quando isso acontece, então o impacto pode ser bastante alto. O problema na detecção disso é que se o relacionamento restabelece rapidamente, o desempenho não sofreu. Mas se incluímos um período de tempo em que a relação não retorna rapidamente, como Vladimir fez, os resultados são notáveis.
Eu adicionei algumas linhas para fechar todas as posições que estão abertas quando os testes estatísticos são quebrados. Provavelmente há melhores maneiras de lidar com a lógica de saída, mas essa mudança simples mostra o benefício de tê-lo lá. O algoritmo não faz também durante o período de teste original, mas o desempenho melhora durante o período prolongado.
(Eu também fiz uma alteração menor nas linhas 20 e 21 para usar a função sid () para definir os ativos x e y em vez do símbolo (). O resto do algoritmo é inalterado.)
O intercâmbio de pares usando métodos Copula em vez de cointegração é a nova raiva. Alguém tentou?
O intercâmbio de par usando métodos Copula em vez de cointegração é o novo.
raiva. Alguém tentou?
Este artigo oferece uma comparação sistemática de métodos de cópula e métodos de cointegração quando aplicado a estoques de mina de ouro dos EUA. Além disso, o documento contrasta os critérios de seleção do par de acordo com a estatística do ADF, o tau de Kendall, o rho e a métrica de distância da Spearman. Uma nota: eu não sou o autor.
Obrigado Julian. Eu tive uma chance e os resultados estão muito bons.
Desculpe, algo deu errado. Tente novamente ou contate-nos enviando comentários.
Você enviou um ticket de suporte com sucesso.
Nossa equipe de suporte estará em contato em breve.
O material deste site é fornecido apenas para fins informativos e não constitui uma oferta de venda, uma solicitação de compra ou uma recomendação ou endosso para qualquer segurança ou estratégia, nem constitui uma oferta de prestação de serviços de consultoria de investimento pela Quantopian.
Além disso, o material não oferece nenhuma opinião em relação à adequação de qualquer segurança ou investimento específico. Nenhuma informação contida neste documento deve ser considerada como uma sugestão para se envolver ou abster-se de qualquer curso de ação relacionado ao investimento, já que nenhuma das empresas atacadas ou nenhuma das suas afiliadas está a comprometer-se a fornecer conselhos de investimento, atuar como conselheiro de qualquer plano ou entidade sujeito a A Lei de Segurança de Renda de Aposentadoria do Empregado de 1974, conforme alterada, conta de aposentadoria individual ou anuidade de aposentadoria individual, ou dar conselhos em capacidade fiduciária em relação aos materiais aqui apresentados. Se você é um aposentadorio individual ou outro investidor, entre em contato com seu consultor financeiro ou outro fiduciário não relacionado a Quantopian sobre se qualquer idéia, estratégia, produto ou serviço de investimento descrito aqui pode ser apropriado para suas circunstâncias. Todos os investimentos envolvem risco, incluindo perda de principal. A Quantopian não oferece garantias sobre a precisão ou integridade das opiniões expressas no site. Os pontos de vista estão sujeitos a alterações e podem ter se tornado pouco confiáveis por vários motivos, incluindo mudanças nas condições do mercado ou nas circunstâncias econômicas.
O material deste site é fornecido apenas para fins informativos e não constitui uma oferta de venda, uma solicitação de compra ou uma recomendação ou endosso para qualquer segurança ou estratégia, nem constitui uma oferta de prestação de serviços de consultoria de investimento pela Quantopian.
Além disso, o material não oferece nenhuma opinião em relação à adequação de qualquer segurança ou investimento específico. Nenhuma informação contida neste documento deve ser considerada como uma sugestão para se envolver ou abster-se de qualquer curso de ação relacionado ao investimento, já que nenhuma das empresas atacadas ou nenhuma das suas afiliadas está a comprometer-se a fornecer conselhos de investimento, atuar como conselheiro de qualquer plano ou entidade sujeito a A Lei de Segurança de Renda de Aposentadoria do Empregado de 1974, conforme alterada, conta de aposentadoria individual ou anuidade de aposentadoria individual, ou dar conselhos em capacidade fiduciária em relação aos materiais aqui apresentados. Se você é um aposentadorio individual ou outro investidor, entre em contato com seu consultor financeiro ou outro fiduciário não relacionado a Quantopian sobre se qualquer idéia, estratégia, produto ou serviço de investimento descrito aqui pode ser apropriado para suas circunstâncias. Todos os investimentos envolvem risco, incluindo perda de principal. A Quantopian não oferece garantias sobre a precisão ou integridade das opiniões expressas no site. Os pontos de vista estão sujeitos a alterações e podem ter se tornado pouco confiáveis por vários motivos, incluindo mudanças nas condições do mercado ou nas circunstâncias econômicas.
A Rentabilidade das Estratégias de Negociação de Pares: Métodos de Distância, Cointegração e Copula.
Rad, Hossein, Low, Rand Kwong Yew e Faff, Robert W., a rentabilidade de pares Estratégias de negociação: métodos de distância, co-integração e copula, Finanças quantitativas, DOI: org / 10.1080 / 14697688.2018.1164337.
35 páginas postadas: 5 de junho de 2018 Última revisão: 19 de maio de 2018.
Hossein Rad.
University of Queensland, Business School, estudantes.
Rand Kwong Yew Low.
University of Queensland Business School.
Robert W. Faff.
Universidade de Queensland.
Data escrita: 3 de junho de 2018.
Realizamos um extenso e robusto estudo sobre o desempenho de três diferentes estratégias de negociação de pares - a distância, cointegração e métodos de cópula - em todo o mercado de ações dos EUA de 1962 a 2017 com custos comerciais variáveis no tempo. Para os métodos de cointegração e copula, nós projetamos uma estratégia de negociação de pares de dois passos computacionalmente eficiente. Em termos de resultados econômicos, os métodos de distância, cointegração e cópula mostram um excesso médio mensal de 91, 85 e 43 bps (38, 33 e 5 bps) antes dos custos de transação (após os custos de transação), respectivamente. Em termos de rentabilidade contínua, a partir de 2009, a frequência das oportunidades de negociação através dos métodos de distância e cointegração é consideravelmente reduzida, enquanto esta frequência permanece estável para o método da copula. Além disso, o método de cópula mostra melhor desempenho para os seus negócios não convertidos em comparação com os outros métodos. Embora o fator de liquidez esteja correlacionado negativamente com os retornos de todas as estratégias, não encontramos evidências de sua correlação com os retornos em excesso do mercado. Todas as estratégias mostram alfas positivos e significativos depois de contabilizar vários fatores de risco. Nós também descobrimos que, além de todas as estratégias que se apresentam melhor durante períodos de volatilidade significativa, o método de cointegração é a estratégia superior durante condições de mercado turbulentas.
Palavras-chave: troca de pares, copula, cointegração, estratégias quantitativas, arbitragem estatística.
Classificação JEL: G11, G12, G14.
Hossein Rad (Autor do Contato)
Universidade de Queensland, Business School, Estudantes (email)
University of Queensland Business School (email)
Edifício 37-411, Joyce Ackroyd.
Brisbane, QLD 4122.
+61 7 3346 8124 (Telefone)
+61 7 3346 8166 (Fax)
Robert Faff.
Universidade de Queensland (email)
Brisbane, Queensland 4072.
Estatísticas de papel.
Jornais relacionados.
Wharton Research Data Services (WRDS) Research Paper Series.
Inscreva-se neste diário gratuito para artigos mais curados sobre este assunto.
Mercado de capitais: EJournal de eficiência de mercado.
Assine este boletim de taxas para mais artigos com curadoria sobre este tópico.
Modelagem econométrica: mercados de capitais - eJournal de preços de ativos.
Assine este boletim de taxas para mais artigos com curadoria sobre este tópico.
Papéis recomendados.
Links Rápidos.
Sobre.
Os cookies são usados por este site. Para recusar ou aprender mais, visite nossa página Cookies. Esta página foi processada por apollo6 em 0.219 segundos.
 Estratégia de negociação de par cointegração 
A negociação de pares é uma forma de reversão média que tem uma clara vantagem de estar sempre protegida contra movimentos do mercado. Geralmente, é uma estratégia alfa elevada quando respaldada por algumas estatísticas rigorosas. Este caderno é executado através dos seguintes conceitos.
O caderno pretende ser uma introdução ao conceito, e que este notebook possui apenas um par, você provavelmente quer que seu algoritmo considere muitos pares ao mesmo tempo.
O caderno foi originalmente criado para uma apresentação no departamento de Applied CS da Harvard e desde então já foi usado em Stanford, Cornell e vários outros locais. Se você estiver interessado em aprender mais sobre como o uso da Pratipia como ferramenta de ensino nas melhores universidades, entre em contato comigo em [email & # 160; protected]
O material deste site é fornecido apenas para fins informativos e não constitui uma oferta de venda, uma solicitação de compra ou uma recomendação ou endosso para qualquer segurança ou estratégia, nem constitui uma oferta de prestação de serviços de consultoria de investimento pela Quantopian. Além disso, o material não oferece nenhuma opinião em relação à adequação de qualquer segurança ou investimento específico. Nenhuma informação contida neste documento deve ser considerada como uma sugestão para se envolver ou abster-se de qualquer curso de ação relacionado ao investimento, já que nenhuma das empresas atacadas ou nenhuma das suas afiliadas está a comprometer-se a fornecer conselhos de investimento, atuar como conselheiro de qualquer plano ou entidade sujeito a A Lei de Segurança de Renda de Aposentadoria do Empregado de 1974, conforme alterada, conta de aposentadoria individual ou anuidade de aposentadoria individual, ou dar conselhos em capacidade fiduciária em relação aos materiais aqui apresentados. Se você é um aposentadorio individual ou outro investidor, entre em contato com seu consultor financeiro ou outro fiduciário não relacionado a Quantopian sobre se qualquer idéia, estratégia, produto ou serviço de investimento descrito aqui pode ser apropriado para suas circunstâncias. Todos os investimentos envolvem risco, incluindo perda de principal. A Quantopian não oferece garantias sobre a precisão ou integridade das opiniões expressas no site. Os pontos de vista estão sujeitos a alterações e podem ter se tornado pouco confiáveis por vários motivos, incluindo mudanças nas condições do mercado ou nas circunstâncias econômicas.
Aqui está um algoritmo muito simples baseado na abordagem apresentada no caderno.
O material deste site é fornecido apenas para fins informativos e não constitui uma oferta de venda, uma solicitação de compra ou uma recomendação ou endosso para qualquer segurança ou estratégia, nem constitui uma oferta de prestação de serviços de consultoria de investimento pela Quantopian. Além disso, o material não oferece nenhuma opinião em relação à adequação de qualquer segurança ou investimento específico. Nenhuma informação contida neste documento deve ser considerada como uma sugestão para se envolver ou abster-se de qualquer curso de ação relacionado ao investimento, já que nenhuma das empresas atacadas ou nenhuma das suas afiliadas está a comprometer-se a fornecer conselhos de investimento, atuar como conselheiro de qualquer plano ou entidade sujeito a A Lei de Segurança de Renda de Aposentadoria do Empregado de 1974, conforme alterada, conta de aposentadoria individual ou anuidade de aposentadoria individual, ou dar conselhos em capacidade fiduciária em relação aos materiais aqui apresentados. Se você é um aposentadorio individual ou outro investidor, entre em contato com seu consultor financeiro ou outro fiduciário não relacionado a Quantopian sobre se qualquer idéia, estratégia, produto ou serviço de investimento descrito aqui pode ser apropriado para suas circunstâncias. Todos os investimentos envolvem risco, incluindo perda de principal. A Quantopian não oferece garantias sobre a precisão ou integridade das opiniões expressas no site. Os pontos de vista estão sujeitos a alterações e podem ter se tornado pouco confiáveis por vários motivos, incluindo mudanças nas condições do mercado ou nas circunstâncias econômicas.
Aqui está um algoritmo mais sofisticado escrito por Ernie Chan. Este algoritmo calcula uma relação de hedge ao invés de apenas manter quantidades iguais de cada segurança.
O material deste site é fornecido apenas para fins informativos e não constitui uma oferta de venda, uma solicitação de compra ou uma recomendação ou endosso para qualquer segurança ou estratégia, nem constitui uma oferta de prestação de serviços de consultoria de investimento pela Quantopian. Além disso, o material não oferece nenhuma opinião em relação à adequação de qualquer segurança ou investimento específico. Nenhuma informação contida neste documento deve ser considerada como uma sugestão para se envolver ou abster-se de qualquer curso de ação relacionado ao investimento, já que nenhuma das empresas atacadas ou nenhuma das suas afiliadas está a comprometer-se a fornecer conselhos de investimento, atuar como conselheiro de qualquer plano ou entidade sujeito a A Lei de Segurança de Renda de Aposentadoria do Empregado de 1974, conforme alterada, conta de aposentadoria individual ou anuidade de aposentadoria individual, ou dar conselhos em capacidade fiduciária em relação aos materiais aqui apresentados. Se você é um aposentadorio individual ou outro investidor, entre em contato com seu consultor financeiro ou outro fiduciário não relacionado a Quantopian sobre se qualquer idéia, estratégia, produto ou serviço de investimento descrito aqui pode ser apropriado para suas circunstâncias. Todos os investimentos envolvem risco, incluindo perda de principal. A Quantopian não oferece garantias sobre a precisão ou integridade das opiniões expressas no site. Os pontos de vista estão sujeitos a alterações e podem ter se tornado pouco confiáveis por vários motivos, incluindo mudanças nas condições do mercado ou nas circunstâncias econômicas.
Coisas muito úteis.
O que o faz perder sistematicamente por quase 3 meses? A Cointegração falhou nesse período?
Basicamente, sim, eles acabaram por não se cointegrar nesse período de tempo, mas retornaram a ser conitegrated no longo prazo.
Eu acho que o abaixamento que você ressalta é um argumento forte para o porquê você realmente querria muitas negociações de pares ao mesmo tempo. Os pares podem ser cointegrados em diferentes escalas de tempo, e qualquer dado não será sempre em um estado comercializável (grande propagação, pequena propagação). Ao aumentar o tamanho da amostra, você pode tornar muito mais provável que pelo menos um par seja fortemente negociável em um determinado momento, e suavizar os estranhos solavancos que você vê aqui.
O material deste site é fornecido apenas para fins informativos e não constitui uma oferta de venda, uma solicitação de compra ou uma recomendação ou endosso para qualquer segurança ou estratégia, nem constitui uma oferta de prestação de serviços de consultoria de investimento pela Quantopian. Além disso, o material não oferece nenhuma opinião em relação à adequação de qualquer segurança ou investimento específico. Nenhuma informação contida neste documento deve ser considerada como uma sugestão para se envolver ou abster-se de qualquer curso de ação relacionado ao investimento, já que nenhuma das empresas atacadas ou nenhuma das suas afiliadas está a comprometer-se a fornecer conselhos de investimento, atuar como conselheiro de qualquer plano ou entidade sujeito a A Lei de Segurança de Renda de Aposentadoria do Empregado de 1974, conforme alterada, conta de aposentadoria individual ou anuidade de aposentadoria individual, ou dar conselhos em capacidade fiduciária em relação aos materiais aqui apresentados. Se você é um aposentadorio individual ou outro investidor, entre em contato com seu consultor financeiro ou outro fiduciário não relacionado a Quantopian sobre se qualquer idéia, estratégia, produto ou serviço de investimento descrito aqui pode ser apropriado para suas circunstâncias. Todos os investimentos envolvem risco, incluindo perda de principal. A Quantopian não oferece garantias sobre a precisão ou integridade das opiniões expressas no site. Os pontos de vista estão sujeitos a alterações e podem ter se tornado pouco confiáveis por vários motivos, incluindo mudanças nas condições do mercado ou nas circunstâncias econômicas.
Obrigado por isso. Muito útil. Eu notei que você usou o teste Augmented-Dickey Fuller para o teste de cointegração. Você possui implementação semelhante usando o teste de Johansen? Eu não consigo encontrar o teste johansen com python.
Parece que, embora tenha havido algumas tentativas de adicionar o teste de Johansen à biblioteca statsmodels, atualmente não existe uma implementação embutida. Aqui, por exemplo, é uma implementação de terceiros. Não tenho certeza quando será adicionado às bibliotecas do Python, existe uma maneira de você trabalhar sem ter isso?
O material deste site é fornecido apenas para fins informativos e não constitui uma oferta de venda, uma solicitação de compra ou uma recomendação ou endosso para qualquer segurança ou estratégia, nem constitui uma oferta de prestação de serviços de consultoria de investimento pela Quantopian. Além disso, o material não oferece nenhuma opinião em relação à adequação de qualquer segurança ou investimento específico. Nenhuma informação contida neste documento deve ser considerada como uma sugestão para se envolver ou abster-se de qualquer curso de ação relacionado ao investimento, já que nenhuma das empresas atacadas ou nenhuma das suas afiliadas está a comprometer-se a fornecer conselhos de investimento, atuar como conselheiro de qualquer plano ou entidade sujeito a A Lei de Segurança de Renda de Aposentadoria do Empregado de 1974, conforme alterada, conta de aposentadoria individual ou anuidade de aposentadoria individual, ou dar conselhos em capacidade fiduciária em relação aos materiais aqui apresentados. Se você é um aposentadorio individual ou outro investidor, entre em contato com seu consultor financeiro ou outro fiduciário não relacionado a Quantopian sobre se qualquer idéia, estratégia, produto ou serviço de investimento descrito aqui pode ser apropriado para suas circunstâncias. Todos os investimentos envolvem risco, incluindo perda de principal. A Quantopian não oferece garantias sobre a precisão ou integridade das opiniões expressas no site. Os pontos de vista estão sujeitos a alterações e podem ter se tornado pouco confiáveis por vários motivos, incluindo mudanças nas condições do mercado ou nas circunstâncias econômicas.
Obrigado. Eu vi esse link. Muito complicado de implementar e escrever tudo no IDE. Na verdade, Satya B tentou aqui tudopático / posts / trading-baskets-co-integrated-with-spy.
A beleza do teste de Johansen é que ele gera autovetores, o que eu acho que você pode usar outros métodos para calcular, embora eu não consiga lembrar no momento, para até 12 ativos e muitas outras coisas, que podem ser usadas para criar um cesta. Eu estava olhando para uma estratégia de arborescência do índice de Ernie e tentando replicá-lo na plataforma da Q para avaliar o desempenho após as taxas / comm, etc. Notei que as tarifas pareciam checar um monte de desempenho. O ABGB & amp; O par de FSLR acima possui uma proporção de 0,75 de sharpe, mas terminou com uma proporção de sharpe de -0,29. Muitos pares aparentemente lucrativos acabaram por não ser lucrativos depois do lance / pedido espalhar, taxas, comissão, etc. Por isso, eu estou olhando para 3 ou mais negociação de pares de ações, e indexar arb. O teste de johansen tornará isso mais fácil de implementar.
Eu continuarei tentando.
O caderno é uma excelente introdução estatística para o comércio de pares, eu recomendo a qualquer pessoa interessada no tópico também olhar para algumas pesquisas financeiras. Anatomia de Pairs Trading é um bom começo, e as referências também são úteis. Mais dois artigos gerais sobre estratégias de arbitragem de risco são Características do Risco e Retorno no Arbitragem de Riscos e Arbitragem Limitada em Mercados de Patrimônio Líquido. Há algumas lições caras que as pessoas aprenderam sobre a execução desses tipos de estratégias, e vale a pena conhecer as lições com antecedência. O forewarned é forearmed.
Anthony, é bom te ver aqui! Procurei uma boa implementação do teste de Johansen por um tempo, mas não consegui encontrar um. Há uma discussão muito longa (mas obsoleta) e solicitação de envio no github sobre como incluí-lo em statsmodels: github / statsmodels / statsmodels / issues / 448 e github / josef-pkt / statsmodels / commit / bf79e8ecb12d946f1113213692db6dac5df2b6e9 É realmente muito ruim Como definitivamente no financiamento quantitativo, isso é bastante utilizado.
O material deste site é fornecido apenas para fins informativos e não constitui uma oferta de venda, uma solicitação de compra ou uma recomendação ou endosso para qualquer segurança ou estratégia, nem constitui uma oferta de prestação de serviços de consultoria de investimento pela Quantopian. Além disso, o material não oferece nenhuma opinião em relação à adequação de qualquer segurança ou investimento específico. Nenhuma informação contida neste documento deve ser considerada como uma sugestão para se envolver ou abster-se de qualquer curso de ação relacionado ao investimento, já que nenhuma das empresas atacadas ou nenhuma das suas afiliadas está a comprometer-se a fornecer conselhos de investimento, atuar como conselheiro de qualquer plano ou entidade sujeito a A Lei de Segurança de Renda de Aposentadoria do Empregado de 1974, conforme alterada, conta de aposentadoria individual ou anuidade de aposentadoria individual, ou dar conselhos em capacidade fiduciária em relação aos materiais aqui apresentados. Se você é um aposentadorio individual ou outro investidor, entre em contato com seu consultor financeiro ou outro fiduciário não relacionado a Quantopian sobre se qualquer idéia, estratégia, produto ou serviço de investimento descrito aqui pode ser apropriado para suas circunstâncias. Todos os investimentos envolvem risco, incluindo perda de principal. A Quantopian não oferece garantias sobre a precisão ou integridade das opiniões expressas no site. Os pontos de vista estão sujeitos a alterações e podem ter se tornado pouco confiáveis por vários motivos, incluindo mudanças nas condições do mercado ou nas circunstâncias econômicas.
@ Aaron. Obrigado pela cabeça. Apreciá-lo vindo do seu. Devo passar algum tempo com esses documentos.
@Thomas. Obrigado pelo link. Como você disse, é um pouco velho. Melhor do que nada, suponho.
Aqui está uma implementação em python para modelos de correção de erros vetoriais. Você também pode usá-lo para encontrar pesos de co-integração. econ. schreiberlin. de/software/vecmclass. py.
Aqui está uma versão do algoritmo de Ernie Chan modificado para trocar vários pares. Esta é uma boa maneira de obter múltiplos fluxos de retorno não correlacionados e reduzir o beta da estratégia geral.
O material deste site é fornecido apenas para fins informativos e não constitui uma oferta de venda, uma solicitação de compra ou uma recomendação ou endosso para qualquer segurança ou estratégia, nem constitui uma oferta de prestação de serviços de consultoria de investimento pela Quantopian. Além disso, o material não oferece nenhuma opinião em relação à adequação de qualquer segurança ou investimento específico. Nenhuma informação contida neste documento deve ser considerada como uma sugestão para se envolver ou abster-se de qualquer curso de ação relacionado ao investimento, já que nenhuma das empresas atacadas ou nenhuma das suas afiliadas está a comprometer-se a fornecer conselhos de investimento, atuar como conselheiro de qualquer plano ou entidade sujeito a A Lei de Segurança de Renda de Aposentadoria do Empregado de 1974, conforme alterada, conta de aposentadoria individual ou anuidade de aposentadoria individual, ou dar conselhos em capacidade fiduciária em relação aos materiais aqui apresentados. Se você é um aposentadorio individual ou outro investidor, entre em contato com seu consultor financeiro ou outro fiduciário não relacionado a Quantopian sobre se qualquer idéia, estratégia, produto ou serviço de investimento descrito aqui pode ser apropriado para suas circunstâncias. Todos os investimentos envolvem risco, incluindo perda de principal. A Quantopian não oferece garantias sobre a precisão ou integridade das opiniões expressas no site. Os pontos de vista estão sujeitos a alterações e podem ter se tornado pouco confiáveis por vários motivos, incluindo mudanças nas condições do mercado ou nas circunstâncias econômicas.
@Delany, Existem métodos disponíveis para tela para pares usando testes estatísticos? Ou esses geralmente são computacionalmente caros?
Estamos trabalhando na forma de tornar os cadernos clonáveis no próprio ambiente de pesquisa. Enquanto isso, os interessados em brincar com o caderno da publicação original podem fazer o download aqui. Depois de fazer o download, faça o upload para sua conta de pesquisa. Se você ainda não possui uma conta de pesquisa, insira um algoritmo no concurso para receber acesso.
@ comerciante bom, o método fornecido no caderno exibirá uma lista de títulos para cointegração, a condição subjacente necessária para negociação de pares. O problema não é tanto a complexidade computacional quanto a perda de poder estatístico. Quanto mais comparações você faz, menos peso você deve colocar em p-valores significativos. Este fenômeno é descrito aqui. Para ser estatisticamente rigoroso, você deve aplicar uma correção Bonferroni aos valores p obtidos a partir de um script de cointegração pairwise. Com o argumento de que quanto mais valores p você gerar, mais provável é que você encontre valores p significativos que sejam falsos e não refletem o comportamento real de cointegração nos títulos subjacentes. Uma vez que o número de comparações feitas ao procurar a cointegração em dois títulos em n cresce a uma taxa de O (n ^ 2), mesmo olhando para 20 títulos tornaria a maioria dos testes estatísticos inúteis. Uma melhor abordagem é criar um pequeno conjunto de títulos candidatos usando a análise dos links econômicos subjacentes. Um pequeno número de testes estatísticos pode então ser feito para determinar quais, se houver, pares são cointegrados. Deixe-me saber se é isso que você quis dizer.
O material deste site é fornecido apenas para fins informativos e não constitui uma oferta de venda, uma solicitação de compra ou uma recomendação ou endosso para qualquer segurança ou estratégia, nem constitui uma oferta de prestação de serviços de consultoria de investimento pela Quantopian. Além disso, o material não oferece nenhuma opinião em relação à adequação de qualquer segurança ou investimento específico. Nenhuma informação contida neste documento deve ser considerada como uma sugestão para se envolver ou abster-se de qualquer curso de ação relacionado ao investimento, já que nenhuma das empresas atacadas ou nenhuma das suas afiliadas está a comprometer-se a fornecer conselhos de investimento, atuar como conselheiro de qualquer plano ou entidade sujeito a A Lei de Segurança de Renda de Aposentadoria do Empregado de 1974, conforme alterada, conta de aposentadoria individual ou anuidade de aposentadoria individual, ou dar conselhos em capacidade fiduciária em relação aos materiais aqui apresentados. Se você é um aposentadorio individual ou outro investidor, entre em contato com seu consultor financeiro ou outro fiduciário não relacionado a Quantopian sobre se qualquer idéia, estratégia, produto ou serviço de investimento descrito aqui pode ser apropriado para suas circunstâncias. Todos os investimentos envolvem risco, incluindo perda de principal. A Quantopian não oferece garantias sobre a precisão ou integridade das opiniões expressas no site. Os pontos de vista estão sujeitos a alterações e podem ter se tornado pouco confiáveis por vários motivos, incluindo mudanças nas condições do mercado ou nas circunstâncias econômicas.
Eu discordo um pouco sobre o problema com muitas comparações. A correção de Bonferroni é apropriada quando você está procurando a verdade. Por exemplo, se você tiver um questionário com 1.000 itens e você o dê para pessoas com e sem câncer, você encontrará em média 50 itens que se correlacionam com o câncer no nível de significância estatística de 5%, mesmo que nada na O questionário está relacionado ao câncer. Se você considerar combinações de dois ou mais itens, você pode gerar quantos correlatos você gosta.
Mas ao projetar estratégias de negociação automatizadas, as relações coincidentes não o prejudicam muito. Eles adicionam ruídos aleatórios e custos de negociação aos seus resultados. Uma vez que poucos resultados são 100% sem sentido, a maioria das relações tem pelo menos um pequeno grau de persistência, não é crítico para filtrar a sua estratégia para os mais rigorosamente validados. Os lucros são importantes, não a verdade. Bonferroni e métricas semelhantes o empurram para as relações mais confiáveis de forma estatística, que geralmente não são de utilidade econômica.
Se por "análise dos links econômicos subjacentes" Você quer dizer começar com pares naturais como duas empresas similares na mesma indústria, não encontrou isso útil. Basicamente, as pessoas percebem as coisas óbvias. Se você quer dizer pensar em relações menos óbvias, especialmente coisas que são invisíveis nos dados usuais que as pessoas usam, então eu concordo. Idealmente, você quer uma história econômica valestável para a dupla relação, o que explica tanto por que existe e por que não é arbitrado. Não só isso protege contra a mineração de dados, mas isso significa que você pode medir se o efeito continua funcionando (sem isso, a única maneira de saber que a estratégia não funciona é quando você perde dinheiro).
Bom trabalho. Eu não leio seu caderno por linha, mas eu posso dizer que será uma ótima adição à biblioteca de exemplo de Quantopian. E acompanhamento com algos compartilhados - bom movimento.
Você pode dar uma olhada no caderno que postei, quantopian / posts / analysis-of-minute-bar-trading-volumes-of-the-etfs-spy-and-sh. Para visualizar como um determinado par vai dentro e fora da cointegração, você poderia fazer uma trama similar. A aplicação do teste estatístico 390 vezes por dia de negociação ao longo de muitos anos exigiria alguma paciência.
@Aaron Estou correto em ler o seu argumento, geralmente, da seguinte forma?
- No mundo real, Bonferroni é muito restritivo e o número de pares rentáveis que você perde através da correção supera a certeza estatística que você ganha.
Eu acho que concordamos quanto ao ponto final que você faz. Eu acho que muitas pessoas da análise de links econômicos fazem são simplistas e ignoram as relações potencialmente interessantes que são mais propensas a conter alfa não arbitralizada.
@ Obrigado obrigado. Estamos realmente planejando expandir a biblioteca de exemplo para um currículo de finanças cuidadoso completo ministrado com cadernos e algoritmos complementares. Nós vamos ter uma série de palestras de verão à medida que desenvolvemos mais tópicos, então fique atento para aqueles. Seu caderno é muito legal e eu me pergunto o quão estável os índices de cointegração são mesmo para pares fortemente cointegrados. Infelizmente, eu não acho que eu tenha tempo de analisar isso em um futuro próximo o que com a produção de nossos outros cadernos curriculares. No entanto, estamos à procura de contribuidores convidados. Se você tiver cadernos, você gostaria de ser apresentado em nosso currículo com crédito total para o (s) autor (es), envie-os para o meu caminho e eu verifico se eles se encaixam em nosso conteúdo atual.
O material deste site é fornecido apenas para fins informativos e não constitui uma oferta de venda, uma solicitação de compra ou uma recomendação ou endosso para qualquer segurança ou estratégia, nem constitui uma oferta de prestação de serviços de consultoria de investimento pela Quantopian. Além disso, o material não oferece nenhuma opinião em relação à adequação de qualquer segurança ou investimento específico. Nenhuma informação contida neste documento deve ser considerada como uma sugestão para se envolver ou abster-se de qualquer curso de ação relacionado ao investimento, já que nenhuma das empresas atacadas ou nenhuma das suas afiliadas está a comprometer-se a fornecer conselhos de investimento, atuar como conselheiro de qualquer plano ou entidade sujeito a A Lei de Segurança de Renda de Aposentadoria do Empregado de 1974, conforme alterada, conta de aposentadoria individual ou anuidade de aposentadoria individual, ou dar conselhos em capacidade fiduciária em relação aos materiais aqui apresentados. Se você é um aposentadorio individual ou outro investidor, entre em contato com seu consultor financeiro ou outro fiduciário não relacionado a Quantopian sobre se qualquer idéia, estratégia, produto ou serviço de investimento descrito aqui pode ser apropriado para suas circunstâncias. Todos os investimentos envolvem risco, incluindo perda de principal. A Quantopian não oferece garantias sobre a precisão ou integridade das opiniões expressas no site. Os pontos de vista estão sujeitos a alterações e podem ter se tornado pouco confiáveis por vários motivos, incluindo mudanças nas condições do mercado ou nas circunstâncias econômicas.
No mundo real, o Bonferroni é muito restritivo e o número de pares rentáveis que você perde através da correção supera a certeza estatística que você ganha.
Não precisamente. Sim, Bonferroni é muito restritiva no sentido de que lhe dá poucos pares, mas Bonferroni também o dirige para os pares errados.
No exemplo de um questionário com 1.000 itens fornecidos a pacientes com câncer e pacientes que não são câncer, é provável que a maioria dos itens não tenha efeito sobre o câncer ou pelo menos os efeitos fracos e complexos que ele é não vale a pena usá-los para obter um conselho médico. Então, se você quer um significado de 5%, você testa cada item no nível de 0,005% (você quer 3,9 desvios-padrão, e não apenas 1,6). Você não se importa com isso, porque qualquer efeito real forte o suficiente para a matéria provavelmente aparecerá com um forte significado. Se você não fez Bonferroni, você terminou com 50 recomendações mesmo quando nenhum dos itens importou, e muitos conselhos inúteis.
Aliás, Bonferroni é uma correção muito conservadora, e há mais sofisticados que permitem mais itens.
Mas se você tiver 1.000 pares para testar, é provável que muitos deles tenham algum grau de previsibilidade cointegral. Mesmo que não haja previsibilidade, incluindo o par extra apenas adiciona um pouco de ruído à sua estratégia, o que não é terrível. Além disso, você não acredita que qualquer um deles tenha previsibilidade tão forte que qualquer um teria percebido e arbitrado. Portanto, é razoável considerar todos os pares com 5% de significância ou menos, e filtrá-los usando critérios econômicos ou outros não relacionados aos dados. Selecionar apenas as relações estatísticas mais fortes não é sábio.
Você pode configurar isso em uma estrutura bayesiana se quiser consistência e precisão; ou você pode usar apenas regras ad hoc.
Apenas para o il-pair-literated que quer aprender. deve haver uma história por trás do par? Deveria haver uma explicação lógica? Eu brinquei com os pares e encontrei, por exemplo, o trabalho da MorganStanley e da Expedia. mas por que? Ou não queremos saber por quê?
deve haver uma história por trás do par?
Esta é, na verdade, uma questão semântica e não financeira. Se você adotou uma abordagem estatística pura sem consideração dos pares reais, você acabaria com centenas ou milhares de pares, incluindo alguns sobrepostos. Então, nós não chamaríamos de estratégia de negociação de pares, mas uma estratégia de equidade longa e curta.
A idéia de troca de pares é que você pode obter uma visão adicional, considerando razões específicas para a dependência entre os estoques; e essa percepção pode resultar em um posicionamento mais preciso, e também evitar grandes perdas quando a relação se rompe.
Relações óbvias, como dois estoques de grande tampa na mesma indústria, tendem a não ser úteis. Isso é confuso às vezes, porque alguns dos principais negociantes de pares adiantados envolveram esses pares, e eles ainda são usados para exemplos na maioria dos textos. Mas muitas pessoas estão observando esses spreads muito de perto para obter os altos índices de Sharpe que você precisa para estratégias não diversificadas, como troca de pares. Deixe esses Sharpes marginais para pessoas de longo prazo que têm muito mais posições.
Além disso, quando falamos sobre um motivo para a relação de pares, estamos falando sobre ambos um positivo - por que é difícil imaginar um mundo em que os valores dessas empresas divergem de suas proporções históricas - e um negativo - Por que essas ações respondem a diferentes notícias econômicas? Então, para duas empresas quase idênticas, a primeira questão é fácil, mas a segunda é difícil. Para duas empresas aparentemente não relacionadas como MS e EXPE, é o inverso. Você pode dizer algo como: "Em uma boa economia, o Morgan Stanley ganha muitos negócios e as pessoas viajam muito", & quot; Mas isso é basicamente verdadeiro para quase duas empresas.
O motivo dos pares clássicos foi duas empresas que responderam aos mesmos fatores econômicos básicos, dizem os preços do petróleo ou as taxas de juros ou a força do dólar norte-americano, mas em diferentes pontos da cadeia de suprimentos, dizem os preços do petróleo bruto versus as receitas da estação de serviço. Um único link não é bom o suficiente, praticamente todas as empresas respondem a esses fatores. Mas você pode encontrar pares que são combinados em fatores mais estreitos, por exemplo, atividade de fracking nos Estados Unidos do Nordeste ou precipitação na Califórnia central, ou que correspondem a direção em uma série de fatores amplos. Ou você pode encontrar duas empresas que estão atualmente em empresas similares hoje, mas que por razões históricas estão listadas em diferentes setores. Outra situação comum é duas empresas envolvidas em diferentes pontos do ciclo de vida de bens duráveis; construtores de casas e lojas de móveis com geografia similar, por exemplo.
De qualquer forma, quando você tem um motivo, você tem coisas para monitorar para afinar sua posição; e para alertá-lo se uma grande deslocação é uma grande oportunidade comercial ou um sinal do que a relação histórica quebrou. Se você não tem um motivo, você melhor terá muita diversificação, o que significa que você não pode pagar o trabalho de análise específica para cada par.
Você não admitiria que, se um casal tiver uma história, então essa história é conhecida e, portanto, não é lucrativa por pessoas que gostam de negociadores de varejo lentos para negociar? E se alguém pudesse extrair os dados e descobrir, através dos dados, histórias inesperadas que poderiam pelo menos competir no espaço de troca de pares? Eu vejo seu ponto em manter um grande grupo de pares se as histórias que conectam os participantes são fracas ou inexploradas, mas ainda assim, se os submissos desejamos participar porque não usamos essa técnica? Ou você sustenta que os comerciantes de varejo podem capturar e lucrar com spreads de pares anômalos de casais bem conhecidos?
Você não admitiria que, se um casal tiver uma história, então essa história é conhecida e, portanto, não é lucrativa por pessoas que gostam de negociadores de varejo lentos para negociar?
Não, eu não concordaria com essa visão. O comércio de pares tende a ser de baixa capacidade, especialmente em estoques de menor capital, e requer muito trabalho. Não é atraente para os gerentes de ativos porque os valores de investimento e as características de risco são erráticas. É principalmente prosseguido por comerciantes profissionais individuais a tempo inteiro, que podem seguir uma dúzia de pares, além de algumas dúzias de outras estratégias, e comerciantes semi-profissionais que estão dispostos a levar o que o mercado lhes dá e ficar em dinheiro quando nenhuma das suas estratégias é atraente. Há mais bons pares do que os comerciantes competentes que os perseguem.
Em princípio, você pode encontrar bons pares usando um filtro automatizado inteligente, ou lendo e pensando. Meu sentimento geral é o primeiro é mais difícil, e se você quiser fazê-lo, você quer fazê-lo para identificar grandes números de pares bastante bons em vez de dois ou três grandes pares. Nesse caso, eu digo simplesmente mudar para equidade longa e curto e esquecer pares. A coisa boa sobre ler e pensar é que os calçados mais bons são preguiçosos e preferem deixar o computador fazer o trabalho. Então, você está competindo com não-quentes, alguns dos quais são muito bons em ler e pensar, mas estão em grande desvantagem para alguém com um computador que conhece um pouco de matemática.
Eu não quero encontrar como dogmático, qualquer pessoa que faz o que outras pessoas lhes dizem não é provável que encontre grande sucesso em qualquer tipo de negociação. Se você acha que pode projetar um algoritmo para identificar bons pares, não há danos na tentativa. Simplesmente não me pareceu a abordagem mais promissora.
. Demora muito trabalho.
Sim. O dinheiro fácil de troca de pares foi feito há muito tempo. Histórias lucrativas em ações de menor capital, embora expõe um par para as aberrações da menor volatilidade da empresa não? & quot; Whoops, que o estoque solar perdeu seu contrato principal. Ou, uau, aquele perfurador acabou de receber um contrato estatal inesperado. & Quot; E então a história é reescrita, ou você ou quatro páginas são arrancadas. Pode-se pegar tais prelúdios para mudanças na história, se alguém observasse apenas uma dúzia de histórias. Mas aqui, onde estamos procurando evitar a exibição de histórias - indo totalmente automatizado, nós seríamos pregados por tais falhas narrativas em apenas alguns relacionamentos par.
Quando você diz mudar para ações longas / curtas, você pareceria defender o abandono da pesquisa estatística de histórias obscuras (talvez caprichosas) em vez de reversão média mais ampla - isso é verdade? Mas, se alguém tem as ferramentas, por que não criar dezenas e dezenas de negócios de dupla estranhos. Certo, as histórias podem não existir. Mas, novamente, talvez você descubra 10 ou 20 que são únicos. E através de um processo de eliminação dos parceiros mal empurrados, você acaba com um conjunto gerenciável que é capaz de dançar com as estrelas? Este site não é nada, senão um experimento massivo na mineração de dados, não?
Mais uma vez, eu não estou tentando leis legais aqui, mas as duas abordagens diretas são (a) tentar encontrar alguns pares que você pode entender ou (b) esquecer os pares e tentar construir um grande portfólio de longos e shorts sem se preocupar em juntar estoques ou fazer pesquisas não autorizadas. Em outras palavras (a) pesquisa inteligente nicho ou (b) mineração maciça de dados.
Tentando dividir a diferença ao encontrar dúzias de pares, mas não fazer a pesquisa personalizada necessária para entender cada um parece subóptima.
tente encontrar alguns pares que você possa entender.
Se eu estiver lendo coisas corretamente, por "entender" você quer dizer que deve haver uma história intuitiva subjacente por trás do relacionamento, eu suponho que haja menos risco de que a relação desapareça de repente? Are you talking about a kind of narrative, "The reason we think this is happening, but can't really explain with a model, is. & quot; or an explanatory quantitative model that provides the story behind the relationship? Say I find a pairs trade based on the idea that when consumers buy lots of eggs, bacon sales drop off, and vice versa. I could make up a story that people can only eat so much for breakfast, and leave it at that. I have a warm, fuzzy feeling, and if I'm a professional trader, hopefully my management will feel warm and fuzzy, too. But is the risk really any different without the story? Unless I actually find a relevant study on breakfast eating, or conduct one myself, then I could just be deluded. And if the underlying cause can't be coded into a set of rules, then it is not really automated quantitative trading, right? As a Quantopian user who doesn't do this sort of thing for a living, I need to get an algo in the Quantopian hedge fund, let it run, and collect a check. No time for doing lots of offline analyses.
There are more good pairs than there are competent traders chasing them.
sounds like the land of milk and honey for us inhabitants of Quantopia. This would say that the Quantopian team should think about churning out candidate pairs for their 35,000+ users to examine like a bunch of ants, trying to come up with stories for a subset of them ("I'll take XYZ & PDQ, do some research, and see if I can find a 'story' to support the relationship.").
I'm just trying to sort out if any of this can be reduced to practice for Joe Schmo Quantopian user, or if it is a hopeless endeavor. Is there a path for Quantopian to get hundreds of lucrative, scalable pairs trading algos for their $10B hedge fund (keep in mind that by my estimation, they need several thousand distinct algos in the fund)? Or is this all a bunch of blah, blah, blah?
I've tried the automated searching of pairs/baskets, using the public knowledge techniques, and though I haven't gone through them all with my tick-level back-tester, the few that I did examine personally were largely worthless; the supposed spread mean-reversion that my grid search turned up was just spurious or due to bid-ask bounce.
However, I do know for a fact that people run decently profitable automated pairs trading portfolios. I take that to mean that it is possible, but the way that I approached it was naive. Perhaps the legwork method is the way to go, coming up with theses about drivers and then looking for portfolios that would express the theses, with the actual hedge ratio construction done "rigorously" using Kalman filters or whatever.
My take is that chatting about pairs trading is wonderful, but there should be a focus on reducing it to practice, with some sort of approachable workflow, so that a Quantopian user can sit down in his pajamas with a cup of coffee on a rainy day and actually come up with a halfway decent algo that would have a shot at getting into the crowd-sourced Q fund. For example, we have:
. try to find a few pairs you can understand.
Perhaps the legwork method is the way to go, coming up with theses about drivers.
ESTÁ BEM. So what's the workflow for your typical Q user? Keep in mind, this needs to be scalable. it won't do Q any good if only users with an advanced degree and 20 years of industry experience can be successful. If the answer is, "Well, there is no workflow. you just need to know" then pairs trading won't be approachable on Q. We have Aaron's "reading and thinking" recommendation above, but read what?
Also, I'd seen somewhere that there are techniques for synthesizing trading pairs, from baskets of securities. Does this work? Or does one effectively end up with the long-short equity portfolio referred to by Aaron Brown above?
The kind of warm-and-fuzzy story you mention is worthless for investing, although as you say it can reassure investors and regulators. What you're looking for is covariates to refine your strategy and, most important, warn you when it's not going to work. The quant trap is that when your relation breaks it simply looks more attractive to your model, and you spiral to doom.
The eggs-and-bacon story is actually the reverse of what you want. That says there is a fixed total consumption, so the total amount consumed of both products is fixed, meaning they are negatively cointegrated. If they were positively correlated, say because investors bid up or down all breakfast foods as a group, you would do anti-pairs trading. You're looking for things that have to be in some kind of long-term balance, but move is opposite directions in the short-term. A warm-and-fuzzy story might be residential construction and furniture sales, in the short run if people are saving for down payments they're not buying furniture, and newly house poor families are making due with old furniture and underfurnishing. But in the long run, houses will get furnished. This would never be a pairs trading story because it's relating entire sectors. To exploit this, you'd build a model tracing the full life cycle, and likely involving other factors like interest rates and family demographics and migration patterns, and trade large numbers of stocks.
To keep this practical, here is a Pairs Trading for Dummies recipe (I mean that respectfully, I'm a big fan for For Dummies books).
Run some kind of statistical screen to identify promising pairs trading targets. Don't look for extreme statistical significance, just some moderate level to screen out the noise like 5% or 1%. It can help to limit one member of each pair to companies or regions you know something about.
Clearly this is for someone who has quant skills, but also general research skills and business judgment.
Run some kind of statistical screen to identify promising pairs trading targets. Don't look for extreme statistical significance, just some moderate level to screen out the noise like 5% or 1%. It can help to limit one member of each pair to companies or regions you know something about.
it sounds like it could be productive for Quantopian to open-source some efficient tools for the screening (and maybe up their game in terms of computing resources). Let's say I'm an expert on company XYZ and maybe I could narrow down my field of candidate securities for comparison to NASDAQ-listed stocks, of which there are about 3,000. So, it is an O(N) computing problem, not O(N^2) as Delaney mentions above for the general screening problem. But, I'd like to compute the statistics on a rolling basis, every trading minute over 2 years. I'd have:
(3000 comparisons/minute)(390 minutes/day)(252 days/year)(2 years) = 589,680,000 comparisons.
Is something like this at all feasible on the Quantopian research platform? If not, how would I scale it back to something that would actually run in a reasonable amount of time (a few days at most) but still provide useful results?
I'm playing around with the algorithm by Ernie Chan that you posted.
Surprisingly, it fails entirely when I swap the pair, see the attached backtest (I've only changed the order).
Also, how to treat the negative hedge (beta from OLS). With the current implementation we go long (short) on both positions when the sign of the hedge is the same as the sign of the z-score, which you don't expect from pair trading. What economic reason can lead to such cointegrations?
Not sure exactly why it's failing when you swap the order. Seems like the math may not be robust to an 'upside-down' par. The hedge ratio comes from the formal definition of cointegration, which is that for some b and u_t = y_t - b * x_t, u_t is stationary (the mean stays the same). Therefore we try to estimate the b parameter in each trade so that we can correctly produce a stationary drift between the two securities. It can be the case that the two are negatively cointegrated, whether there's a strong economic reason for this I'm not sure. You might try putting in place restrictions to not trade when you have double long or double short positions, or employing a better estimation method for b (more data points for example).
All of the issues you bring up are very sophisticated improvements, and making these improvements to the algorithm could result in something very good. I don't have cut and dried solutions for you, as you are now dancing around the edge of what is known about algorithmic trading. A lot of it comes down to rigorously testing different signal processing methods to see which yield the best out of sample performance. Also, like you said it's important to let the economic reasoning drive the creation of your model.
O material deste site é fornecido apenas para fins informativos e não constitui uma oferta de venda, uma solicitação de compra ou uma recomendação ou endosso para qualquer segurança ou estratégia, nem constitui uma oferta de prestação de serviços de consultoria de investimento pela Quantopian. Além disso, o material não oferece nenhuma opinião em relação à adequação de qualquer segurança ou investimento específico. Nenhuma informação contida neste documento deve ser considerada como uma sugestão para se envolver ou abster-se de qualquer curso de ação relacionado ao investimento, já que nenhuma das empresas atacadas ou nenhuma das suas afiliadas está a comprometer-se a fornecer conselhos de investimento, atuar como conselheiro de qualquer plano ou entidade sujeito a A Lei de Segurança de Renda de Aposentadoria do Empregado de 1974, conforme alterada, conta de aposentadoria individual ou anuidade de aposentadoria individual, ou dar conselhos em capacidade fiduciária em relação aos materiais aqui apresentados. Se você é um aposentadorio individual ou outro investidor, entre em contato com seu consultor financeiro ou outro fiduciário não relacionado a Quantopian sobre se qualquer idéia, estratégia, produto ou serviço de investimento descrito aqui pode ser apropriado para suas circunstâncias. Todos os investimentos envolvem risco, incluindo perda de principal. A Quantopian não oferece garantias sobre a precisão ou integridade das opiniões expressas no site. Os pontos de vista estão sujeitos a alterações e podem ter se tornado pouco confiáveis por vários motivos, incluindo mudanças nas condições do mercado ou nas circunstâncias econômicas.
Obrigado pela sua resposta rápida.
This is actually a very valuable response, as I was afraid I might have missed something obvious.
O material deste site é fornecido apenas para fins informativos e não constitui uma oferta de venda, uma solicitação de compra ou uma recomendação ou endosso para qualquer segurança ou estratégia, nem constitui uma oferta de prestação de serviços de consultoria de investimento pela Quantopian. Além disso, o material não oferece nenhuma opinião em relação à adequação de qualquer segurança ou investimento específico. Nenhuma informação contida neste documento deve ser considerada como uma sugestão para se envolver ou abster-se de qualquer curso de ação relacionado ao investimento, já que nenhuma das empresas atacadas ou nenhuma das suas afiliadas está a comprometer-se a fornecer conselhos de investimento, atuar como conselheiro de qualquer plano ou entidade sujeito a A Lei de Segurança de Renda de Aposentadoria do Empregado de 1974, conforme alterada, conta de aposentadoria individual ou anuidade de aposentadoria individual, ou dar conselhos em capacidade fiduciária em relação aos materiais aqui apresentados. Se você é um aposentadorio individual ou outro investidor, entre em contato com seu consultor financeiro ou outro fiduciário não relacionado a Quantopian sobre se qualquer idéia, estratégia, produto ou serviço de investimento descrito aqui pode ser apropriado para suas circunstâncias. Todos os investimentos envolvem risco, incluindo perda de principal. A Quantopian não oferece garantias sobre a precisão ou integridade das opiniões expressas no site. Os pontos de vista estão sujeitos a alterações e podem ter se tornado pouco confiáveis por vários motivos, incluindo mudanças nas condições do mercado ou nas circunstâncias econômicas.
Here is a temp website which has similarity of movement information, which is about the same idea as pairs. StockA is the stock you are comparing to, row is how this pair ranks to all pairs, (its row count). It only contains information for the top 5000 or so pairs.
The data is pulled from the period of Aug 2017 to Feb 2018 and is an average of each day.
(Change IYR to symbol wanted)
The idea behind the algorithm is not actually for pairs trading, but is for similarity of how a pair moves. I will leave this test site up for a few weeks.
Thanks Delaney. It's a great starting step for pair trading technique.
I am working on the missing piece of this strategy which is how to use Quantopian Research environment to find statistical cointegration stock/ETF pairs from entire universe or from the same sectors. After I construct good pairs, then I can use the Notebook you provided for further analysis and backtest.
Does anyone have any suggestion for me?
I have a question for those trading pairs.
How do you deal with the large processing requirements?
I coded some tests for co-integration and results per combination take roughly 1 second.
I can get this down with parallel processing and by storing data locally but a universe of 2000 stocks will still have 4000000 potential combinations.
Perhaps pointing out the obvious, but .
A pre-screening tool, or pre-screening done for you for a fee .
When I was researching this sort of thing a couple of years ago, the baskets of 3 and 4 of only a few hundred ETFs took months on my MacBook. And they were all mostly garbage, though I never actually went through them all. I probably should.
If I remember correctly, that was 1.6T combinations, or something like that.
The formula is R to the Sterling S, divided by S!
so, for 4000 stocks, it would be.
(4000 x3999)/2! or, about 8 million pairs made from the 4000 typical stocks. for 3 stocks considered together, there would be 4000 x 3999 x 3998 /3!
You can prune the possible tree pretty easily though. I believe most stocks behave as if they really were ETFs (at the market neutral way of looking at it only) and can be represented by a group of other stocks, that move with their same fundamentals. You only have to know what sectors they move with, and then check for pairs against this.
So, for example, with HLF, it moves with consumer, several currencies, emerging markets, and a few others. It is hard to separate out exactly as emerging markets also move with currency, so which is which becomes the question.
For two typical tech stocks that appear to be very similar, it may well be the case that their main difference is which currencies they move with. So, for most of the time, they may appear co-integrated, but then, when there is a difference in currencies that affects one a lot, and not so much the other, they then move apart.
I was working on an algorithm to determine the underlying components, (so to speak) that collectively make each stock behave with the same logic as if it was a multi-sector ETF. (where the underlying stocks are a mystery to be solved) I have most of it done, and I believe I have enough done to prove it does work this way, but I lost my real time quote stream a few months ago, and so stopped working on it.
since my algorithm would need to consider up to 15 underlying components to solve this problem, it would be 4000 x 3999 x3998 . 3985/15! So, I have to trim it. The link I posted a few messages above shows some of the results of this work, where I first determine the possible stocks to consider, for each symbol.
It is my belief that the market is essentially swamped out with pairs trading, and this is why it works so mathematically perfect for each stock to behave as if it is an ETF.
There is certainly a high computational cost to looking at all possible pairs. However, there is a tradeoff to this approach, as you put yourself at a high risk for multiple comparisons bias. Please see earlier in this thread for a fairly complete discussion of this issue. Regardless of which method you use to select pairs, you'll want to do some additional validation using the notebook and then use the algorithms in this thread to try backtesting a strategy.
O material deste site é fornecido apenas para fins informativos e não constitui uma oferta de venda, uma solicitação de compra ou uma recomendação ou endosso para qualquer segurança ou estratégia, nem constitui uma oferta de prestação de serviços de consultoria de investimento pela Quantopian. Além disso, o material não oferece nenhuma opinião em relação à adequação de qualquer segurança ou investimento específico. Nenhuma informação contida neste documento deve ser considerada como uma sugestão para se envolver ou abster-se de qualquer curso de ação relacionado ao investimento, já que nenhuma das empresas atacadas ou nenhuma das suas afiliadas está a comprometer-se a fornecer conselhos de investimento, atuar como conselheiro de qualquer plano ou entidade sujeito a A Lei de Segurança de Renda de Aposentadoria do Empregado de 1974, conforme alterada, conta de aposentadoria individual ou anuidade de aposentadoria individual, ou dar conselhos em capacidade fiduciária em relação aos materiais aqui apresentados. Se você é um aposentadorio individual ou outro investidor, entre em contato com seu consultor financeiro ou outro fiduciário não relacionado a Quantopian sobre se qualquer idéia, estratégia, produto ou serviço de investimento descrito aqui pode ser apropriado para suas circunstâncias. Todos os investimentos envolvem risco, incluindo perda de principal. A Quantopian não oferece garantias sobre a precisão ou integridade das opiniões expressas no site. Os pontos de vista estão sujeitos a alterações e podem ter se tornado pouco confiáveis por vários motivos, incluindo mudanças nas condições do mercado ou nas circunstâncias econômicas.
Indeed, Aaron Brown's advice is gold.
What is "multiple comparisons bias"? I'm lazy and don't feel like sifting through this rather extensive discussion thread.
I find it hard to believe that pairs trading would work as a scalable hedge fund strategy (be able to pour $10's of millions into a single pair). Is there any evidence? In other words, why is Quantopian promoting this?
This is one of the best threads on the site.
It scales; you can trade hundreds of pairs.
Multiple comparisons is a core problem in all of statistics, right up there with overfitting. The general idea is that if you run 100 statistical tests on random data, you should still expect to get 5 below a 5% cutoff and 1 below a 1% cutoff based on random chance. This is true when testing various iterations of a model, or many pairs. Because the number of pairs is O(n^2) you should expect to get a lot of spurious p-values when looking for pairs. A naive strategy of just looping through pairs won't work, you need to be a bit more sophisticated.
And yes you trade many pairs with low exposure to each. That said, I think that long-short equity strategies may be a better first bet to get into the fund at this point, just based on robustness and capacity.
O material deste site é fornecido apenas para fins informativos e não constitui uma oferta de venda, uma solicitação de compra ou uma recomendação ou endosso para qualquer segurança ou estratégia, nem constitui uma oferta de prestação de serviços de consultoria de investimento pela Quantopian. Além disso, o material não oferece nenhuma opinião em relação à adequação de qualquer segurança ou investimento específico. Nenhuma informação contida neste documento deve ser considerada como uma sugestão para se envolver ou abster-se de qualquer curso de ação relacionado ao investimento, já que nenhuma das empresas atacadas ou nenhuma das suas afiliadas está a comprometer-se a fornecer conselhos de investimento, atuar como conselheiro de qualquer plano ou entidade sujeito a A Lei de Segurança de Renda de Aposentadoria do Empregado de 1974, conforme alterada, conta de aposentadoria individual ou anuidade de aposentadoria individual, ou dar conselhos em capacidade fiduciária em relação aos materiais aqui apresentados. Se você é um aposentadorio individual ou outro investidor, entre em contato com seu consultor financeiro ou outro fiduciário não relacionado a Quantopian sobre se qualquer idéia, estratégia, produto ou serviço de investimento descrito aqui pode ser apropriado para suas circunstâncias. Todos os investimentos envolvem risco, incluindo perda de principal. A Quantopian não oferece garantias sobre a precisão ou integridade das opiniões expressas no site. Os pontos de vista estão sujeitos a alterações e podem ter se tornado pouco confiáveis por vários motivos, incluindo mudanças nas condições do mercado ou nas circunstâncias econômicas.
There is more electricity used in the state of New Jersey doing calculations on the market than there is electricity used in that state for manufacturing. Pairs strategy likely accounts for at least 50% of this usage as even HFT likely often uses some version of deviation from the mean. It is my opinion that the market is so saturated with pairs trading that given the price of any ten tickers that had no big news, one could deduce the price of the rest of the market and be within 0.7% of the actual price, 90% of the time for the top traded 4000 stocks. (and it could probably be done with less than ten tickers. ) So, for a 30 dollar stock, the margin of error would be about a quarter. This is how precisely, compared to each other, I think they move. Until there is news.
It sounds like a corollary to the reciprocal of the law of large numbers; given enough samples you will always find something to fit.
I would reintroduce the concept I proposed in an article in S&C last spring ; the directed acyclic graph or DAG. Using thousands of correlated or cointegrated pairs I built groups from them. Those groups were essentially social graphs of securities. You can search here for DAG, but briefly, you can use the concept of pair trading, that is, fade and favor the divergences, but with a correlated group. And such a group is assembled, dynamically, from a list of pairs that are "friends of friends". It's a pairs strategy, essentially, but with lower risk and less work managing hundreds of separate strategies.
That said, I think that long-short equity strategies may be a better first bet to get into the fund at this point, just based on robustness and capacity.
Have people been coming up with good ones? If so, what proportion are using the new data sets? If not, why not, do you think that is?
I haven't been focusing on them at all, mostly because there's a problem of opportunity cost; if I spend all my time looking for equity long-short algos, not only is there a chance I don't find anything, but if I do, there's still a chance that Quantopian doesn't select it, and since I cannot trade them myself, that time is wasted (unless I pitch it to other funds I suppose). If I look for algos that I personally can trade, and I find some, then I trade them.
I realize there's an unfortunate schism wherein I am using your platform but not contributing to your business model, so if you have any ideas how I can help without wasting my time writing algos that only work high account levels, please let me know. Pairs trading/statistical arbitrage might be one solution, but I've found them very difficult to implement; anything that looks promising in Quantopian fails the backtest when using dividend-adjusted bid-ask tick data, so I might shift my focus back to building my own lower latency infrastructure for a while.
I would reintroduce the concept I proposed in an article in S&C last spring ; the directed acyclic graph or DAG. Using thousands of correlated or cointegrated pairs I built groups from them.
Legal. Yeah, pretty similar. The DAG though was used specifically to find the networked graph. Those trees might embody the same thing, not sure. But I'd guess the idea is approximate.
Why would anyone want to pairs trade when trading a Minimum Spanning Tree or correlated network graph of stocks is so much safer and easier? I've built dozens of pairs strategies and the directionality of the pair always broke the model. And all pairs I ever tested all went directional at some point -- beyond the account's ability to Martingale down.
Have people been coming up with good ones? If so, what proportion are using the new data sets? If not, why not, do you think that is?
I can't release any specific data on this. I can say that there's a lag between when we update product features/try to educate people about algorithm writing techniques (larger universe size, shorting), and when new strategies start appearing. We'd love more large universe strategies right now and I'm trying to figure out ways to make it easier for folks to develop large universe long-short strategies using pipeline.
I haven't been focusing on them at all, mostly because there's a problem of opportunity cost; if I spend all my time looking for equity long-short algos, not only is there a chance I don't find anything, but if I do, there's still a chance that Quantopian doesn't select it, and since I cannot trade them myself, that time is wasted (unless I pitch it to other funds I suppose). If I look for algos that I personally can trade, and I find some, then I trade them.
I realize there's an unfortunate schism wherein I am using your platform but not contributing to your business model, so if you have any ideas how I can help without wasting my time writing algos that only work high account levels, please let me know. Pairs trading/statistical arbitrage might be one solution, but I've found them very difficult to implement; anything that looks promising in Quantopian fails the backtest when using dividend-adjusted bid-ask tick data, so I might shift my focus back to building my own lower latency infrastructure for a while.
Totally reasonable. We don't release our product with the expectation that everybody will use it to develop strategies for the fund, we also want to support your use case of personal trading. We also understand there's a conflict between pushing people to write high capacity market neutral long-short strategies, when those will never work on their own money. What I'm trying to figure out is ways to make the workflow of producing and evaluating factors easier, because once you have a factor-based ranking system, it's pretty easy to slot that into an existing long-short algorithm using pipeline. I'm working on sharing a pipeline algorithm with the community and attaching it to the lectures page in an effort to get more cloning and tweaking going on.
O material deste site é fornecido apenas para fins informativos e não constitui uma oferta de venda, uma solicitação de compra ou uma recomendação ou endosso para qualquer segurança ou estratégia, nem constitui uma oferta de prestação de serviços de consultoria de investimento pela Quantopian. Além disso, o material não oferece nenhuma opinião em relação à adequação de qualquer segurança ou investimento específico. Nenhuma informação contida neste documento deve ser considerada como uma sugestão para se envolver ou abster-se de qualquer curso de ação relacionado ao investimento, já que nenhuma das empresas atacadas ou nenhuma das suas afiliadas está a comprometer-se a fornecer conselhos de investimento, atuar como conselheiro de qualquer plano ou entidade sujeito a A Lei de Segurança de Renda de Aposentadoria do Empregado de 1974, conforme alterada, conta de aposentadoria individual ou anuidade de aposentadoria individual, ou dar conselhos em capacidade fiduciária em relação aos materiais aqui apresentados. Se você é um aposentadorio individual ou outro investidor, entre em contato com seu consultor financeiro ou outro fiduciário não relacionado a Quantopian sobre se qualquer idéia, estratégia, produto ou serviço de investimento descrito aqui pode ser apropriado para suas circunstâncias. Todos os investimentos envolvem risco, incluindo perda de principal. A Quantopian não oferece garantias sobre a precisão ou integridade das opiniões expressas no site. Os pontos de vista estão sujeitos a alterações e podem ter se tornado pouco confiáveis por vários motivos, incluindo mudanças nas condições do mercado ou nas circunstâncias econômicas.
I share Simon's sentiment. I've continued to participate in the contests, but the idea of spending tens (hundreds?) of hours trying to come up with an uber algo that will compete with the big dogs sounds like a lot of work, with a very uncertain pay-off (it's not even clear that you are still working on the hedge fund. any substantive news?). The pipeline thingy has a bit of a learning curve, so I haven't taken that on yet (the fact that lots of obscure modules need to be imported is a red flag). That said, if there were good working examples that could be tweaked, I might give it a go.
What I'm trying to figure out is ways to make the workflow of producing and evaluating factors easier, because once you have a factor-based ranking system, it's pretty easy to slot that into an existing long-short algorithm using pipeline.
Why don't you get all of the Q eggheads together for 1 week and see if you can come up with a long-short algo that would be Q hedge-fundable, and publish it (and better yet, actually fund it). Not only would this provide an existence proof, but you should also gain some insight into the workflow and the person-hours to accomplish the task.
Here is a pipeline algorithm that I just published as the goto example of a long-short equity strategy. I'm sure it will go through many improvements as the public eye turns to it, but it should at least be a start. It's tricky because we do want to publish algorithms that are 95% of the way done, so that users can take the last 5% and improve the strategies in many different uncorrelated ways. With long-short equity most of the work is in choosing good factors and factor ranking techniques. Unfortunately those are the type of signals that will disappear when shared publicly, but the actual machinery to trade within the algorithm should stay pretty consistent. If you're maybe looking to learn pipeline a bit, I would recommend going through Lectures 17 and 18, then looking at the algorithm.
I can say for certain we are working on the hedge fund. Even if you have strategies that aren't consistently winning the contest, we may be interested in an algorithm that can consistently do ok. Ultimately, my job as the one overseeing the lectures is to keep trying to make it easier so people don't have to spend as much time working on algorithms that may never pay off for them, and so we get more algorithms that do pay off in the long run.
O material deste site é fornecido apenas para fins informativos e não constitui uma oferta de venda, uma solicitação de compra ou uma recomendação ou endosso para qualquer segurança ou estratégia, nem constitui uma oferta de prestação de serviços de consultoria de investimento pela Quantopian. Além disso, o material não oferece nenhuma opinião em relação à adequação de qualquer segurança ou investimento específico. Nenhuma informação contida neste documento deve ser considerada como uma sugestão para se envolver ou abster-se de qualquer curso de ação relacionado ao investimento, já que nenhuma das empresas atacadas ou nenhuma das suas afiliadas está a comprometer-se a fornecer conselhos de investimento, atuar como conselheiro de qualquer plano ou entidade sujeito a A Lei de Segurança de Renda de Aposentadoria do Empregado de 1974, conforme alterada, conta de aposentadoria individual ou anuidade de aposentadoria individual, ou dar conselhos em capacidade fiduciária em relação aos materiais aqui apresentados. Se você é um aposentadorio individual ou outro investidor, entre em contato com seu consultor financeiro ou outro fiduciário não relacionado a Quantopian sobre se qualquer idéia, estratégia, produto ou serviço de investimento descrito aqui pode ser apropriado para suas circunstâncias. Todos os investimentos envolvem risco, incluindo perda de principal. A Quantopian não oferece garantias sobre a precisão ou integridade das opiniões expressas no site. Os pontos de vista estão sujeitos a alterações e podem ter se tornado pouco confiáveis por vários motivos, incluindo mudanças nas condições do mercado ou nas circunstâncias econômicas.
I start to implement pair trading backtesting in research environment instead of IDE. The main reason is to automatic run multiple pairs performance analysis before I jump into IDE for full backtest. Another reason for this work is to do further analysis for returns from many pairs.
I am wondering where I can find the example of backtesting in research environment to start with. Any comment is very appreciated.
In your research environment there should be a 'Tutorials and Documentation' pasta. Inside the folder should be a notebook with the title 'Tutorial (Advanced) - Backtesting with Zipline'. Make a copy of that and let me know if that's enough to get you started.
O material deste site é fornecido apenas para fins informativos e não constitui uma oferta de venda, uma solicitação de compra ou uma recomendação ou endosso para qualquer segurança ou estratégia, nem constitui uma oferta de prestação de serviços de consultoria de investimento pela Quantopian. Além disso, o material não oferece nenhuma opinião em relação à adequação de qualquer segurança ou investimento específico. Nenhuma informação contida neste documento deve ser considerada como uma sugestão para se envolver ou abster-se de qualquer curso de ação relacionado ao investimento, já que nenhuma das empresas atacadas ou nenhuma das suas afiliadas está a comprometer-se a fornecer conselhos de investimento, atuar como conselheiro de qualquer plano ou entidade sujeito a A Lei de Segurança de Renda de Aposentadoria do Empregado de 1974, conforme alterada, conta de aposentadoria individual ou anuidade de aposentadoria individual, ou dar conselhos em capacidade fiduciária em relação aos materiais aqui apresentados. Se você é um aposentadorio individual ou outro investidor, entre em contato com seu consultor financeiro ou outro fiduciário não relacionado a Quantopian sobre se qualquer idéia, estratégia, produto ou serviço de investimento descrito aqui pode ser apropriado para suas circunstâncias. Todos os investimentos envolvem risco, incluindo perda de principal. A Quantopian não oferece garantias sobre a precisão ou integridade das opiniões expressas no site. Os pontos de vista estão sujeitos a alterações e podem ter se tornado pouco confiáveis por vários motivos, incluindo mudanças nas condições do mercado ou nas circunstâncias econômicas.
May 28 algo falls below benchmark if extended to date and -43% PvR with default slippage and commissions, tanking thru 2018.
Hope it can be rescued b/c it shows good potential.
The example strategies cheat and run on the same timeframe over which we did research and found the securities to be cointegrated. In a real strategy you'd want to find pairs that were cointegrated into the future and not just historically cointegrated. The template should stay largely the same, so it's an issue of swapping in new securities that you have statistical evidence will stay cointegrated.
O material deste site é fornecido apenas para fins informativos e não constitui uma oferta de venda, uma solicitação de compra ou uma recomendação ou endosso para qualquer segurança ou estratégia, nem constitui uma oferta de prestação de serviços de consultoria de investimento pela Quantopian. Além disso, o material não oferece nenhuma opinião em relação à adequação de qualquer segurança ou investimento específico. Nenhuma informação contida neste documento deve ser considerada como uma sugestão para se envolver ou abster-se de qualquer curso de ação relacionado ao investimento, já que nenhuma das empresas atacadas ou nenhuma das suas afiliadas está a comprometer-se a fornecer conselhos de investimento, atuar como conselheiro de qualquer plano ou entidade sujeito a A Lei de Segurança de Renda de Aposentadoria do Empregado de 1974, conforme alterada, conta de aposentadoria individual ou anuidade de aposentadoria individual, ou dar conselhos em capacidade fiduciária em relação aos materiais aqui apresentados. Se você é um aposentadorio individual ou outro investidor, entre em contato com seu consultor financeiro ou outro fiduciário não relacionado a Quantopian sobre se qualquer idéia, estratégia, produto ou serviço de investimento descrito aqui pode ser apropriado para suas circunstâncias. Todos os investimentos envolvem risco, incluindo perda de principal. A Quantopian não oferece garantias sobre a precisão ou integridade das opiniões expressas no site. Os pontos de vista estão sujeitos a alterações e podem ter se tornado pouco confiáveis por vários motivos, incluindo mudanças nas condições do mercado ou nas circunstâncias econômicas.
Could you post a tutorial on calibrating an Ornstein Uhlenbeck process for mean reverting series residuals?
We've added a lecture on this to our queue. No idea when we might currently get to it, but it's on there.
O material deste site é fornecido apenas para fins informativos e não constitui uma oferta de venda, uma solicitação de compra ou uma recomendação ou endosso para qualquer segurança ou estratégia, nem constitui uma oferta de prestação de serviços de consultoria de investimento pela Quantopian. Além disso, o material não oferece nenhuma opinião em relação à adequação de qualquer segurança ou investimento específico. Nenhuma informação contida neste documento deve ser considerada como uma sugestão para se envolver ou abster-se de qualquer curso de ação relacionado ao investimento, já que nenhuma das empresas atacadas ou nenhuma das suas afiliadas está a comprometer-se a fornecer conselhos de investimento, atuar como conselheiro de qualquer plano ou entidade sujeito a A Lei de Segurança de Renda de Aposentadoria do Empregado de 1974, conforme alterada, conta de aposentadoria individual ou anuidade de aposentadoria individual, ou dar conselhos em capacidade fiduciária em relação aos materiais aqui apresentados. Se você é um aposentadorio individual ou outro investidor, entre em contato com seu consultor financeiro ou outro fiduciário não relacionado a Quantopian sobre se qualquer idéia, estratégia, produto ou serviço de investimento descrito aqui pode ser apropriado para suas circunstâncias. Todos os investimentos envolvem risco, incluindo perda de principal. A Quantopian não oferece garantias sobre a precisão ou integridade das opiniões expressas no site. Os pontos de vista estão sujeitos a alterações e podem ter se tornado pouco confiáveis por vários motivos, incluindo mudanças nas condições do mercado ou nas circunstâncias econômicas.
Ages ago I posted, perhaps as anonymole, that a "pair" needn't be made of only two securities. In fact, the whole "we only allow low beta strats" mantra is pretty much an argument that all strategies should be a variation of a pairs strat. That is, over all, a market neutral position is best.
Taking this further however, and applying a more formal model to the pairs strategy (that the security set have a "story" attached to it) I wonder if the two halves of the pair would do better as independent baskets of securities. That if one approached a pairs strategy with the mind to match up two behaviorally opposed baskets of securities that instead of trying to search all pair combinations looking for all the super-great-marvelous attributes a pair should have, that instead, one determine the two sides of the pair coin and fill each side with the most appropriately identified securities -- for each side.
A simplistic model might be described thusly:
Equities which cycle up in the spring/summer and down in the fall/winter would be bundled together and set against equities which cycle oppositely (down in the summer, up in the winter).
No doubt there are more interesting or undiscovered cycles that exist. My point is that rather than identify securities that yin and yang, one discover technical, or macro, or fundamental classifications which zig when the other zags. Then find securities which fit each of those baskets of behavior.
This is a very interesting idea and definitely something that professional quants do. At the core we just want two assets on either side of a pair, and a portfolio of assets will do just as well as a single equity. There are probably pros and cons of each method, but the idea of using a basket of things rather than a single thing can greatly reduce your position concentration risk and lead to a better algorithm. I'd say it's worth research. You'd still likely want a few different pairs of baskets as each would smooth out the return curve of the other and produce a lower volatility algorithm.
O material deste site é fornecido apenas para fins informativos e não constitui uma oferta de venda, uma solicitação de compra ou uma recomendação ou endosso para qualquer segurança ou estratégia, nem constitui uma oferta de prestação de serviços de consultoria de investimento pela Quantopian. Além disso, o material não oferece nenhuma opinião em relação à adequação de qualquer segurança ou investimento específico. Nenhuma informação contida neste documento deve ser considerada como uma sugestão para se envolver ou abster-se de qualquer curso de ação relacionado ao investimento, já que nenhuma das empresas atacadas ou nenhuma das suas afiliadas está a comprometer-se a fornecer conselhos de investimento, atuar como conselheiro de qualquer plano ou entidade sujeito a A Lei de Segurança de Renda de Aposentadoria do Empregado de 1974, conforme alterada, conta de aposentadoria individual ou anuidade de aposentadoria individual, ou dar conselhos em capacidade fiduciária em relação aos materiais aqui apresentados. Se você é um aposentadorio individual ou outro investidor, entre em contato com seu consultor financeiro ou outro fiduciário não relacionado a Quantopian sobre se qualquer idéia, estratégia, produto ou serviço de investimento descrito aqui pode ser apropriado para suas circunstâncias. Todos os investimentos envolvem risco, incluindo perda de principal. A Quantopian não oferece garantias sobre a precisão ou integridade das opiniões expressas no site. Os pontos de vista estão sujeitos a alterações e podem ter se tornado pouco confiáveis por vários motivos, incluindo mudanças nas condições do mercado ou nas circunstâncias econômicas.
I have to run an errand, so I only have five minutes, but hopefully I can be clear in that time.
To demonstrate the chops of an AI system, I created an algorithm that can represent the small changes in stocks price, as the sum of a set of ETFs. For example, with MSFT one might have XLK, XLY, FXE, FXI, and some others.
I can show that the typical price movements during a day can be represented in this way. However, when there is specific news, then it is no longer true, if the news is strong.
What I believe this shows is that instead of things "returning to the mean" they are in fact not moving arbitrarily and so, if they return to the mean, it is because one of the underlying components in fact moved. (Of all the underlying components, usually only one or two have news, and the rest are balancing each other out, once the price has adjusted.)
How might one design a trading platform for this as even if you do know it is the sum of other waveforms that are causing one waveform, one still doesn't know what causes them to move until after the fact.
(the reduction in influence is 1/1.6 when looking at the components, so after a couple of feedback loops, the influence is not measurable. Thanks, and sorry for the hurried note,
Have you read Algorithmic Trading written by Ernie Chan? For sure you read it, I have a question: in fact I am not good in programming and working with Matlab, I am really interested in Currency cross rate part of the book and I want to implement the positions in live trading but I don't know how to do that in fact I can't understand what the numbers as positions mean! If somebody can guide me I'm really appreciated.
Not entirely sure I'm understanding your thesis but it seems that you've created an expression that models the returns of a specific stock from it's sector exposures. This is actually a common risk modeling tactic, check out my notebook here. To build a trading strategy off of this I would take your hypothesis about changing news and use that to alter the coefficients of your model. A cool place to start would be to check out the lectures on factor modeling and then maybe look at some news/sentiment data sets to see if you can find any anomalies.
O material deste site é fornecido apenas para fins informativos e não constitui uma oferta de venda, uma solicitação de compra ou uma recomendação ou endosso para qualquer segurança ou estratégia, nem constitui uma oferta de prestação de serviços de consultoria de investimento pela Quantopian. Além disso, o material não oferece nenhuma opinião em relação à adequação de qualquer segurança ou investimento específico. Nenhuma informação contida neste documento deve ser considerada como uma sugestão para se envolver ou abster-se de qualquer curso de ação relacionado ao investimento, já que nenhuma das empresas atacadas ou nenhuma das suas afiliadas está a comprometer-se a fornecer conselhos de investimento, atuar como conselheiro de qualquer plano ou entidade sujeito a A Lei de Segurança de Renda de Aposentadoria do Empregado de 1974, conforme alterada, conta de aposentadoria individual ou anuidade de aposentadoria individual, ou dar conselhos em capacidade fiduciária em relação aos materiais aqui apresentados. Se você é um aposentadorio individual ou outro investidor, entre em contato com seu consultor financeiro ou outro fiduciário não relacionado a Quantopian sobre se qualquer idéia, estratégia, produto ou serviço de investimento descrito aqui pode ser apropriado para suas circunstâncias. Todos os investimentos envolvem risco, incluindo perda de principal. A Quantopian não oferece garantias sobre a precisão ou integridade das opiniões expressas no site. Os pontos de vista estão sujeitos a alterações e podem ter se tornado pouco confiáveis por vários motivos, incluindo mudanças nas condições do mercado ou nas circunstâncias econômicas.
That is close. It models the returns to within a few cents usually, at any moment in time, depending on the stock and its volatility as a sum of its sectors. (except when it has specific news.) What I envision behind it is a large set of funds using NLP to invest by sector based on news. Because they are so large, then they tend to swamp out the market during normal times.
I can also show that stock prices changes are directly proportional to the sum of the underlying sectors information, for most time periods. For example, the price changes for three months show this and also for three weeks, which is a bit chaos like, as it would seem they wouldnt be so perfectly in tune. Anyway, with this I can sort stocks by their overall market efficiency (the more efficient you are, the more you sync with the relationship stated above).
I also believe that there are huge funds that are interested in doing nothing more than treading water (as one possible explanation) and they move their money around the world, just trying to stay even, and so the result is that at any given time, the sum of everything stays near zero. (when one thing goes up somewhere, something else somewhere else goes down.)
These relationships also break down during periods of very high volatility such as fall 2018.
There are other things I am able to quantify, but again have no idea how to use. When information about a specific stock or sector hits the market, it is my observation that the more objective the information, the faster the market responds, and the more subjective it is, the slower the market responds.
For example, when Ackman says that HLF is a pyramid scheme, then it can sometimes be hours, and sometimes even days before that news is no longer affecting the price of the stock, but when an analyst upgrades or downgrades a stock, that is more objective and the entire price adjustment is over in fifteen minutes. (If you subtract out market movements then an analysts announcement looks like a log curve, with most of the action in the beginning and a bit of a ringing at the last.)
Again, this all happens too fast to be of use, and it is after the fact that I can say, "That was subjective."
I don't think I am able to alter the coefficients as you suggest. I am using a hard coded take on a system of recursive polynomials for my modeling, so there are billions of coefficients.
Hi, I have a quick and possibly dumb question. Why did you use the ratio instead of the difference between S1 and S2 in the Quantopain pairs trading lecture? In the co-integration lecture, you use the difference instead. In other sources, they use the difference as well.
There's an updated notebook, algorithm, and video available on the lecture series page.
O material deste site é fornecido apenas para fins informativos e não constitui uma oferta de venda, uma solicitação de compra ou uma recomendação ou endosso para qualquer segurança ou estratégia, nem constitui uma oferta de prestação de serviços de consultoria de investimento pela Quantopian. Além disso, o material não oferece nenhuma opinião em relação à adequação de qualquer segurança ou investimento específico. Nenhuma informação contida neste documento deve ser considerada como uma sugestão para se envolver ou abster-se de qualquer curso de ação relacionado ao investimento, já que nenhuma das empresas atacadas ou nenhuma das suas afiliadas está a comprometer-se a fornecer conselhos de investimento, atuar como conselheiro de qualquer plano ou entidade sujeito a A Lei de Segurança de Renda de Aposentadoria do Empregado de 1974, conforme alterada, conta de aposentadoria individual ou anuidade de aposentadoria individual, ou dar conselhos em capacidade fiduciária em relação aos materiais aqui apresentados. Se você é um aposentadorio individual ou outro investidor, entre em contato com seu consultor financeiro ou outro fiduciário não relacionado a Quantopian sobre se qualquer idéia, estratégia, produto ou serviço de investimento descrito aqui pode ser apropriado para suas circunstâncias. Todos os investimentos envolvem risco, incluindo perda de principal. A Quantopian não oferece garantias sobre a precisão ou integridade das opiniões expressas no site. Os pontos de vista estão sujeitos a alterações e podem ter se tornado pouco confiáveis por vários motivos, incluindo mudanças nas condições do mercado ou nas circunstâncias econômicas.
And as a response to pandasaurus' question, which I unfortunately just saw, we have removed the ratio as it was a typo in the lecture.
O material deste site é fornecido apenas para fins informativos e não constitui uma oferta de venda, uma solicitação de compra ou uma recomendação ou endosso para qualquer segurança ou estratégia, nem constitui uma oferta de prestação de serviços de consultoria de investimento pela Quantopian. Além disso, o material não oferece nenhuma opinião em relação à adequação de qualquer segurança ou investimento específico. Nenhuma informação contida neste documento deve ser considerada como uma sugestão para se envolver ou abster-se de qualquer curso de ação relacionado ao investimento, já que nenhuma das empresas atacadas ou nenhuma das suas afiliadas está a comprometer-se a fornecer conselhos de investimento, atuar como conselheiro de qualquer plano ou entidade sujeito a A Lei de Segurança de Renda de Aposentadoria do Empregado de 1974, conforme alterada, conta de aposentadoria individual ou anuidade de aposentadoria individual, ou dar conselhos em capacidade fiduciária em relação aos materiais aqui apresentados. Se você é um aposentadorio individual ou outro investidor, entre em contato com seu consultor financeiro ou outro fiduciário não relacionado a Quantopian sobre se qualquer idéia, estratégia, produto ou serviço de investimento descrito aqui pode ser apropriado para suas circunstâncias. Todos os investimentos envolvem risco, incluindo perda de principal. A Quantopian não oferece garantias sobre a precisão ou integridade das opiniões expressas no site. Os pontos de vista estão sujeitos a alterações e podem ter se tornado pouco confiáveis por vários motivos, incluindo mudanças nas condições do mercado ou nas circunstâncias econômicas.
Greetings Quantopian Community,
I was at the NYC Event on Pairs Trading, and the current example algorithm is deprecated, such that one cannot deploy it in live trading. With this fix, users can now deploy the algorithm in live trading. The fix is hosted as a pull request on github--thanks.
Muito obrigado. Could you please submit your PR to the following repo? It's where we store lectures and examples. Doesn't quite fit in the current form of zipline.
O material deste site é fornecido apenas para fins informativos e não constitui uma oferta de venda, uma solicitação de compra ou uma recomendação ou endosso para qualquer segurança ou estratégia, nem constitui uma oferta de prestação de serviços de consultoria de investimento pela Quantopian. Além disso, o material não oferece nenhuma opinião em relação à adequação de qualquer segurança ou investimento específico. Nenhuma informação contida neste documento deve ser considerada como uma sugestão para se envolver ou abster-se de qualquer curso de ação relacionado ao investimento, já que nenhuma das empresas atacadas ou nenhuma das suas afiliadas está a comprometer-se a fornecer conselhos de investimento, atuar como conselheiro de qualquer plano ou entidade sujeito a A Lei de Segurança de Renda de Aposentadoria do Empregado de 1974, conforme alterada, conta de aposentadoria individual ou anuidade de aposentadoria individual, ou dar conselhos em capacidade fiduciária em relação aos materiais aqui apresentados. Se você é um aposentadorio individual ou outro investidor, entre em contato com seu consultor financeiro ou outro fiduciário não relacionado a Quantopian sobre se qualquer idéia, estratégia, produto ou serviço de investimento descrito aqui pode ser apropriado para suas circunstâncias. Todos os investimentos envolvem risco, incluindo perda de principal. A Quantopian não oferece garantias sobre a precisão ou integridade das opiniões expressas no site. Os pontos de vista estão sujeitos a alterações e podem ter se tornado pouco confiáveis por vários motivos, incluindo mudanças nas condições do mercado ou nas circunstâncias econômicas.
Thanks, Delaney. I submitted the PR to the specified branch.
Obrigado! Delaney. I am finishing my graduation thesis these days, Your work may help me a lot.
That's great to hear, Dzi. Hope it goes well!
O material deste site é fornecido apenas para fins informativos e não constitui uma oferta de venda, uma solicitação de compra ou uma recomendação ou endosso para qualquer segurança ou estratégia, nem constitui uma oferta de prestação de serviços de consultoria de investimento pela Quantopian. Além disso, o material não oferece nenhuma opinião em relação à adequação de qualquer segurança ou investimento específico. Nenhuma informação contida neste documento deve ser considerada como uma sugestão para se envolver ou abster-se de qualquer curso de ação relacionado ao investimento, já que nenhuma das empresas atacadas ou nenhuma das suas afiliadas está a comprometer-se a fornecer conselhos de investimento, atuar como conselheiro de qualquer plano ou entidade sujeito a A Lei de Segurança de Renda de Aposentadoria do Empregado de 1974, conforme alterada, conta de aposentadoria individual ou anuidade de aposentadoria individual, ou dar conselhos em capacidade fiduciária em relação aos materiais aqui apresentados. Se você é um aposentadorio individual ou outro investidor, entre em contato com seu consultor financeiro ou outro fiduciário não relacionado a Quantopian sobre se qualquer idéia, estratégia, produto ou serviço de investimento descrito aqui pode ser apropriado para suas circunstâncias. Todos os investimentos envolvem risco, incluindo perda de principal. A Quantopian não oferece garantias sobre a precisão ou integridade das opiniões expressas no site. Os pontos de vista estão sujeitos a alterações e podem ter se tornado pouco confiáveis por vários motivos, incluindo mudanças nas condições do mercado ou nas circunstâncias econômicas.
I have question in regards to high frequency pairs trading using bid/ask price. One thing that I noticed is during an entry signal if I'm supposed to go long in one and short the other, the Long position that I enter would be using the ask price and this ask price normally is higher than the bid price, so when my exit signals to exit, my bid price that I close my position at will often cause me to loose than make money. What are some of the ways to prevent this from happening or what are some strategies that goes hand in hand with trading high frequently with pairs strategy. Further, how are limit orders used with the bid/ask price.
If you need to make the spread in order for the strategy to be profitable, then you are squarely competing with high-frequency market makers, and it's a whole different ball game. You are unlikely to win. If you have control over the specific order types you send, you could attempt to use mid-point pegs or something, but as soon as you admit any sort of limit orders where execution is not immediate, you now need to be concerned about being exposed unhedged, which is something that you'll need to backtest. (not easy either). What some people do is try and rest or peg an order for the less liquid leg, and attempt to save some of the cost of the wider spread (though again, these days, you'll probably just get adversely selected for no net gain), and then as soon as that fills, you aggressively execute the hedge leg across the narrower spread.
How does one use both bid and ask z score in high frequency trading? For simplicity, I can understand using z score, but when it comes to using both bid and ask price z score, I have trouble picturing how it is used.
Simon's right, mid-frequency strategies generally should be fairly robust to bid-ask spreads. If they're not the edge is probably too small to be consistently profitable. For high frequency trading you do have to consider the bid and ask in many different ways, as your trading will be very sensitive to movements in both. How exactly you use the data would depend on your model.
O material deste site é fornecido apenas para fins informativos e não constitui uma oferta de venda, uma solicitação de compra ou uma recomendação ou endosso para qualquer segurança ou estratégia, nem constitui uma oferta de prestação de serviços de consultoria de investimento pela Quantopian. Além disso, o material não oferece nenhuma opinião em relação à adequação de qualquer segurança ou investimento específico. Nenhuma informação contida neste documento deve ser considerada como uma sugestão para se envolver ou abster-se de qualquer curso de ação relacionado ao investimento, já que nenhuma das empresas atacadas ou nenhuma das suas afiliadas está a comprometer-se a fornecer conselhos de investimento, atuar como conselheiro de qualquer plano ou entidade sujeito a A Lei de Segurança de Renda de Aposentadoria do Empregado de 1974, conforme alterada, conta de aposentadoria individual ou anuidade de aposentadoria individual, ou dar conselhos em capacidade fiduciária em relação aos materiais aqui apresentados. Se você é um aposentadorio individual ou outro investidor, entre em contato com seu consultor financeiro ou outro fiduciário não relacionado a Quantopian sobre se qualquer idéia, estratégia, produto ou serviço de investimento descrito aqui pode ser apropriado para suas circunstâncias. Todos os investimentos envolvem risco, incluindo perda de principal. A Quantopian não oferece garantias sobre a precisão ou integridade das opiniões expressas no site. Os pontos de vista estão sujeitos a alterações e podem ter se tornado pouco confiáveis por vários motivos, incluindo mudanças nas condições do mercado ou nas circunstâncias econômicas.
You can imagine that the spread is a synthetic asset. For instance, X = 1L -1S so a single unit of X is long one unit of L and short one unit of S. If you need to buy one unit of X immediately, you will buy at the ask of L and sell at the bid of S. If you need to sell one unit of X, you will sell at the bid of L and buy at the ask of S.
You can then easily calculate the bid and ask for X, you have just two "z-scores" to deal with. Then, if you like, you can delay buying until the X_ask_zscore < threshold, and delay selling until the X_bid_zscore > exit_threshold.
Espero que isto ajude.
I had a chance to see this notebook before and I would recommend it to everyone here. Lots of amazing info can be found inside.
O material deste site é fornecido apenas para fins informativos e não constitui uma oferta de venda, uma solicitação de compra ou uma recomendação ou endosso para qualquer segurança ou estratégia, nem constitui uma oferta de prestação de serviços de consultoria de investimento pela Quantopian. Além disso, o material não oferece nenhuma opinião em relação à adequação de qualquer segurança ou investimento específico. Nenhuma informação contida neste documento deve ser considerada como uma sugestão para se envolver ou abster-se de qualquer curso de ação relacionado ao investimento, já que nenhuma das empresas atacadas ou nenhuma das suas afiliadas está a comprometer-se a fornecer conselhos de investimento, atuar como conselheiro de qualquer plano ou entidade sujeito a A Lei de Segurança de Renda de Aposentadoria do Empregado de 1974, conforme alterada, conta de aposentadoria individual ou anuidade de aposentadoria individual, ou dar conselhos em capacidade fiduciária em relação aos materiais aqui apresentados. Se você é um aposentadorio individual ou outro investidor, entre em contato com seu consultor financeiro ou outro fiduciário não relacionado a Quantopian sobre se qualquer idéia, estratégia, produto ou serviço de investimento descrito aqui pode ser apropriado para suas circunstâncias. Todos os investimentos envolvem risco, incluindo perda de principal. A Quantopian não oferece garantias sobre a precisão ou integridade das opiniões expressas no site. Os pontos de vista estão sujeitos a alterações e podem ter se tornado pouco confiáveis por vários motivos, incluindo mudanças nas condições do mercado ou nas circunstâncias econômicas.
Hey Simon. thanks for that last post. I've been thinking through the logic behind that, but I do have some questions. Hope you don't mind explaining or expanding on it a little. 1) If I understood you correctly you mean X being the spread between a pair? in other words one unit of X immediately to be traded immediately, I would think that you will buy at the ask of X rather than L to be immediate wouldn't you? One problem that I would encounter by buying one unit of X at the ask price of L would be that the ask price of L may not be the lowest ask price of X and therefore may cause me to still queue to purchase the unit of X or not even fill. Can you say a little more in regards to this?
2) Further, there is one concept that I'm having a hard time to understand. Let's say that my Z score > entry threshold of +2. I would short L by one unit by selling one unit of L at the bid price of L and go long one unit of Y at the ask price of Y. Assuming hedge ratio is 1 and all. When my Z score < exit threshold of say 0.2. I would then exit my short and long position of the pair. The issue that I would encounter assuming no fees and all is that I would loose money during these trades. I'm having a hard time understanding why that would be if my Z score returned to or close to mean. Is the reason behind this due to the fact that the volatility of the bid/ask price may not be high enough to allow the difference in the entry and exit bid/ask spread price at the start and end of the transaction to pull far enough to earn money?
Please take a look at the last part of the page for this link that shows the true correlations, which are arrived at by saying "from the point of view of a pairs trader, how correlated are these tickers."
If you know how to subtract out the part of the market that floats all boats, to be left only with the information pertaining to neutral, there are extreme correlations. XLK is the ticker used in the example, but there are a thousand I could have used. When you know how to subtract out all but the neutral information, the market becomes completely different in how it appears.
Scroll to the very bottom of the article and look at the two tables with correlation information. These numbers are this way because there is so much interest in pairs trading that it tends to swamp things out. It is even more pronounced in Europe.
1) I think you are getting a bit confused; X is not a real thing, it's a synthetic asset formed by the basket of L and S. X has a price to buy and a price to sell which you calculate from the bids and asks of the components. If you cross the spread, generally, you trade immediately in small enough size. You only have uncertainty about fills if you try to earn the spread. That gets much more difficult.
2) Maybe. If your trades are not making money, I mean, that's a big problem. I can't answer why they are not making money. It could be transaction costs like the bid/ask spreads, you should analyze the volatility of your baskets as a function of the bid/ask spreads you have to pay. If you have to cross four 5-cent spreads to try and capture a spread mean-reversion of 2 cents, well yeah you are going to have problems. A bigger problem I found was that mean reversion happens one of two ways; either the asset reverts to the mean, or the mean converges with the asset (assuming you are constantly recomputing the mean, which seems to be common practice). In both cases your z-score goes back to zero, but only in the first case do you make any money.
@daniel I read your article, the correlations at the end, are those of prices, or returns ?
Thanks for clearing that up for me. The idea of using synthetic assets is relatively new to me. I went and researched it a little and noticed that it is often used to capture streams of cash flow. I'm currently trying to perform residual pairs trading with Chinese Future Contracts. As I research it for the use of Futures, I don’t really find much articles or explanations. Is it applicable to Futures?
At the same time, I'm relatively new at this and trying to go through the lectures and stuff to learn. When you say I should analyze the volatility of my baskets as a function of the bid/ask spreads. Do you know where I can find a lecture that discuss this further? Sorry to ask some fundamental questions. One thing I notice in my data is that the bid/ask spread is really small and by small the it is just a spread of one tick of the futures contract; while the Volume for that tick is also small just around 80 or less contracts for either bid or ask.
The correlations are about prices, but just a subset.
(I have edited this down, as compared to what you probably have in email. Please don't copy anything from the email onto the board.)
James - maybe? You need pairs/baskets with enough variance to profitably trade the mean reversion. There tends to be a spectrum; structurally correlated assets (like ETF vs their component baskets) are perfect to trade, so perfect, that everyone does it and therefore the deviations are probably less than the spread. Then there's really shitty pairs which you find doing brute force analysis of the stock market. These have lots of variance, but they probably don't converge, and/or the relationship is totally spurious. Read closely Aaron Brown's posts on this thread. You want something in the middle.
Danial - I am not sure how useful correlations of prices of any kind are ? They are bound to be super high.
By itself I don't believe there is any one thing that is useful for a neutral strategy.
My approach is to look at the market as being represented by several hundred core waveform, and similar to the idea of Fourier Transform, you can use these fundamental waveform to create the 4000 heaviest played stocks. So, basically everything I believe about the market is based on the idea of correlations, as this is what I used as one of the first steps to find those wave forms. (which are not easy to find.)
Consider if you have Tickers AAA and BBB, and they are two similar stocks.
AAA might have as its composite the waves A, B, C, D, E, F, G, H, I, J, and BBB may have D, E, F, G, H, I, J, K, L.
During the times that there is little to no activity in the components A, B, C, K, L then the two tickers would be nearly perfectly correlated. But if suddenly component A had news (for example), then the perfect correlations would no longer hold, since stock BBB does not have an A component waveform..
If you apply the above to the idea of mean reversion, then you can see what I believe the mean reversion strategy is actually about.
In my opinion the best way to play a neutral strategy would be to devise a portfolio that is about the underlying fundamental wave components..
And in the interest of completeness, I will mention that in the above examples, waves A, B, C, etc are also made of composite waves, (and those composites . ) as the market is self referencing. The several hundred are at the bottom of the self referencing, and are something that exists in theory, that I believe I could "easily" find, but have not spent the time and energy to do so as of this date.
I also believe that if I had data for all the major markets of the world and was able to deduce the underlying component waves for those instruments that are heavily played by the collectively speaking, multi-trillion dollar funds, that the sum of these waves would (except for inflation) most of these times sum to be zero.
Some researchers generate the log price series of two equities with the daily close. Then the spread series is estimated using regression analysis based on log price series data. For equities X and Y, they run linear regression over the log price series and get the coefficient β.
Any reason they use log price series instead?
Desculpe, algo deu errado. Tente novamente ou contate-nos enviando comentários.
Você enviou um ticket de suporte com sucesso.
Nossa equipe de suporte estará em contato em breve.
O material deste site é fornecido apenas para fins informativos e não constitui uma oferta de venda, uma solicitação de compra ou uma recomendação ou endosso para qualquer segurança ou estratégia, nem constitui uma oferta de prestação de serviços de consultoria de investimento pela Quantopian.
Além disso, o material não oferece nenhuma opinião em relação à adequação de qualquer segurança ou investimento específico. Nenhuma informação contida neste documento deve ser considerada como uma sugestão para se envolver ou abster-se de qualquer curso de ação relacionado ao investimento, já que nenhuma das empresas atacadas ou nenhuma das suas afiliadas está a comprometer-se a fornecer conselhos de investimento, atuar como conselheiro de qualquer plano ou entidade sujeito a A Lei de Segurança de Renda de Aposentadoria do Empregado de 1974, conforme alterada, conta de aposentadoria individual ou anuidade de aposentadoria individual, ou dar conselhos em capacidade fiduciária em relação aos materiais aqui apresentados. Se você é um aposentadorio individual ou outro investidor, entre em contato com seu consultor financeiro ou outro fiduciário não relacionado a Quantopian sobre se qualquer idéia, estratégia, produto ou serviço de investimento descrito aqui pode ser apropriado para suas circunstâncias. Todos os investimentos envolvem risco, incluindo perda de principal. A Quantopian não oferece garantias sobre a precisão ou integridade das opiniões expressas no site. Os pontos de vista estão sujeitos a alterações e podem ter se tornado pouco confiáveis por vários motivos, incluindo mudanças nas condições do mercado ou nas circunstâncias econômicas.
O material deste site é fornecido apenas para fins informativos e não constitui uma oferta de venda, uma solicitação de compra ou uma recomendação ou endosso para qualquer segurança ou estratégia, nem constitui uma oferta de prestação de serviços de consultoria de investimento pela Quantopian.
Além disso, o material não oferece nenhuma opinião em relação à adequação de qualquer segurança ou investimento específico. Nenhuma informação contida neste documento deve ser considerada como uma sugestão para se envolver ou abster-se de qualquer curso de ação relacionado ao investimento, já que nenhuma das empresas atacadas ou nenhuma das suas afiliadas está a comprometer-se a fornecer conselhos de investimento, atuar como conselheiro de qualquer plano ou entidade sujeito a A Lei de Segurança de Renda de Aposentadoria do Empregado de 1974, conforme alterada, conta de aposentadoria individual ou anuidade de aposentadoria individual, ou dar conselhos em capacidade fiduciária em relação aos materiais aqui apresentados. Se você é um aposentadorio individual ou outro investidor, entre em contato com seu consultor financeiro ou outro fiduciário não relacionado a Quantopian sobre se qualquer idéia, estratégia, produto ou serviço de investimento descrito aqui pode ser apropriado para suas circunstâncias. Todos os investimentos envolvem risco, incluindo perda de principal. A Quantopian não oferece garantias sobre a precisão ou integridade das opiniões expressas no site. Os pontos de vista estão sujeitos a alterações e podem ter se tornado pouco confiáveis por vários motivos, incluindo mudanças nas condições do mercado ou nas circunstâncias econômicas.
A negociação de pares é uma forma de reversão média que tem uma clara vantagem de estar sempre protegida contra movimentos do mercado. Geralmente, é uma estratégia alfa elevada quando respaldada por algumas estatísticas rigorosas. Este caderno é executado através dos seguintes conceitos.
O caderno pretende ser uma introdução ao conceito, e que este notebook possui apenas um par, você provavelmente quer que seu algoritmo considere muitos pares ao mesmo tempo.
O caderno foi originalmente criado para uma apresentação no departamento de Applied CS da Harvard e desde então já foi usado em Stanford, Cornell e vários outros locais. Se você estiver interessado em aprender mais sobre como o uso da Pratipia como ferramenta de ensino nas melhores universidades, entre em contato comigo em [email & # 160; protected]
O material deste site é fornecido apenas para fins informativos e não constitui uma oferta de venda, uma solicitação de compra ou uma recomendação ou endosso para qualquer segurança ou estratégia, nem constitui uma oferta de prestação de serviços de consultoria de investimento pela Quantopian. Além disso, o material não oferece nenhuma opinião em relação à adequação de qualquer segurança ou investimento específico. Nenhuma informação contida neste documento deve ser considerada como uma sugestão para se envolver ou abster-se de qualquer curso de ação relacionado ao investimento, já que nenhuma das empresas atacadas ou nenhuma das suas afiliadas está a comprometer-se a fornecer conselhos de investimento, atuar como conselheiro de qualquer plano ou entidade sujeito a A Lei de Segurança de Renda de Aposentadoria do Empregado de 1974, conforme alterada, conta de aposentadoria individual ou anuidade de aposentadoria individual, ou dar conselhos em capacidade fiduciária em relação aos materiais aqui apresentados. Se você é um aposentadorio individual ou outro investidor, entre em contato com seu consultor financeiro ou outro fiduciário não relacionado a Quantopian sobre se qualquer idéia, estratégia, produto ou serviço de investimento descrito aqui pode ser apropriado para suas circunstâncias. Todos os investimentos envolvem risco, incluindo perda de principal. A Quantopian não oferece garantias sobre a precisão ou integridade das opiniões expressas no site. Os pontos de vista estão sujeitos a alterações e podem ter se tornado pouco confiáveis por vários motivos, incluindo mudanças nas condições do mercado ou nas circunstâncias econômicas.
Aqui está um algoritmo muito simples baseado na abordagem apresentada no caderno.
O material deste site é fornecido apenas para fins informativos e não constitui uma oferta de venda, uma solicitação de compra ou uma recomendação ou endosso para qualquer segurança ou estratégia, nem constitui uma oferta de prestação de serviços de consultoria de investimento pela Quantopian. Além disso, o material não oferece nenhuma opinião em relação à adequação de qualquer segurança ou investimento específico. Nenhuma informação contida neste documento deve ser considerada como uma sugestão para se envolver ou abster-se de qualquer curso de ação relacionado ao investimento, já que nenhuma das empresas atacadas ou nenhuma das suas afiliadas está a comprometer-se a fornecer conselhos de investimento, atuar como conselheiro de qualquer plano ou entidade sujeito a A Lei de Segurança de Renda de Aposentadoria do Empregado de 1974, conforme alterada, conta de aposentadoria individual ou anuidade de aposentadoria individual, ou dar conselhos em capacidade fiduciária em relação aos materiais aqui apresentados. Se você é um aposentadorio individual ou outro investidor, entre em contato com seu consultor financeiro ou outro fiduciário não relacionado a Quantopian sobre se qualquer idéia, estratégia, produto ou serviço de investimento descrito aqui pode ser apropriado para suas circunstâncias. Todos os investimentos envolvem risco, incluindo perda de principal. A Quantopian não oferece garantias sobre a precisão ou integridade das opiniões expressas no site. Os pontos de vista estão sujeitos a alterações e podem ter se tornado pouco confiáveis por vários motivos, incluindo mudanças nas condições do mercado ou nas circunstâncias econômicas.
Aqui está um algoritmo mais sofisticado escrito por Ernie Chan. Este algoritmo calcula uma relação de hedge ao invés de apenas manter quantidades iguais de cada segurança.
O material deste site é fornecido apenas para fins informativos e não constitui uma oferta de venda, uma solicitação de compra ou uma recomendação ou endosso para qualquer segurança ou estratégia, nem constitui uma oferta de prestação de serviços de consultoria de investimento pela Quantopian. Além disso, o material não oferece nenhuma opinião em relação à adequação de qualquer segurança ou investimento específico. Nenhuma informação contida neste documento deve ser considerada como uma sugestão para se envolver ou abster-se de qualquer curso de ação relacionado ao investimento, já que nenhuma das empresas atacadas ou nenhuma das suas afiliadas está a comprometer-se a fornecer conselhos de investimento, atuar como conselheiro de qualquer plano ou entidade sujeito a A Lei de Segurança de Renda de Aposentadoria do Empregado de 1974, conforme alterada, conta de aposentadoria individual ou anuidade de aposentadoria individual, ou dar conselhos em capacidade fiduciária em relação aos materiais aqui apresentados. Se você é um aposentadorio individual ou outro investidor, entre em contato com seu consultor financeiro ou outro fiduciário não relacionado a Quantopian sobre se qualquer idéia, estratégia, produto ou serviço de investimento descrito aqui pode ser apropriado para suas circunstâncias. Todos os investimentos envolvem risco, incluindo perda de principal. A Quantopian não oferece garantias sobre a precisão ou integridade das opiniões expressas no site. Os pontos de vista estão sujeitos a alterações e podem ter se tornado pouco confiáveis por vários motivos, incluindo mudanças nas condições do mercado ou nas circunstâncias econômicas.
Coisas muito úteis.
O que o faz perder sistematicamente por quase 3 meses? A Cointegração falhou nesse período?
Basicamente, sim, eles acabaram por não se cointegrar nesse período de tempo, mas retornaram a ser conitegrated no longo prazo.
Eu acho que o abaixamento que você ressalta é um argumento forte para o porquê você realmente querria muitas negociações de pares ao mesmo tempo. Os pares podem ser cointegrados em diferentes escalas de tempo, e qualquer dado não será sempre em um estado comercializável (grande propagação, pequena propagação). Ao aumentar o tamanho da amostra, você pode tornar muito mais provável que pelo menos um par seja fortemente negociável em um determinado momento, e suavizar os estranhos solavancos que você vê aqui.
O material deste site é fornecido apenas para fins informativos e não constitui uma oferta de venda, uma solicitação de compra ou uma recomendação ou endosso para qualquer segurança ou estratégia, nem constitui uma oferta de prestação de serviços de consultoria de investimento pela Quantopian. Além disso, o material não oferece nenhuma opinião em relação à adequação de qualquer segurança ou investimento específico. Nenhuma informação contida neste documento deve ser considerada como uma sugestão para se envolver ou abster-se de qualquer curso de ação relacionado ao investimento, já que nenhuma das empresas atacadas ou nenhuma das suas afiliadas está a comprometer-se a fornecer conselhos de investimento, atuar como conselheiro de qualquer plano ou entidade sujeito a A Lei de Segurança de Renda de Aposentadoria do Empregado de 1974, conforme alterada, conta de aposentadoria individual ou anuidade de aposentadoria individual, ou dar conselhos em capacidade fiduciária em relação aos materiais aqui apresentados. Se você é um aposentadorio individual ou outro investidor, entre em contato com seu consultor financeiro ou outro fiduciário não relacionado a Quantopian sobre se qualquer idéia, estratégia, produto ou serviço de investimento descrito aqui pode ser apropriado para suas circunstâncias. Todos os investimentos envolvem risco, incluindo perda de principal. A Quantopian não oferece garantias sobre a precisão ou integridade das opiniões expressas no site. Os pontos de vista estão sujeitos a alterações e podem ter se tornado pouco confiáveis por vários motivos, incluindo mudanças nas condições do mercado ou nas circunstâncias econômicas.
Obrigado por isso. Muito útil. Eu notei que você usou o teste Augmented-Dickey Fuller para o teste de cointegração. Você possui implementação semelhante usando o teste de Johansen? Eu não consigo encontrar o teste johansen com python.
Parece que, embora tenha havido algumas tentativas de adicionar o teste de Johansen à biblioteca statsmodels, atualmente não existe uma implementação embutida. Aqui, por exemplo, é uma implementação de terceiros. Não tenho certeza quando será adicionado às bibliotecas do Python, existe uma maneira de você trabalhar sem ter isso?
O material deste site é fornecido apenas para fins informativos e não constitui uma oferta de venda, uma solicitação de compra ou uma recomendação ou endosso para qualquer segurança ou estratégia, nem constitui uma oferta de prestação de serviços de consultoria de investimento pela Quantopian. Além disso, o material não oferece nenhuma opinião em relação à adequação de qualquer segurança ou investimento específico. Nenhuma informação contida neste documento deve ser considerada como uma sugestão para se envolver ou abster-se de qualquer curso de ação relacionado ao investimento, já que nenhuma das empresas atacadas ou nenhuma das suas afiliadas está a comprometer-se a fornecer conselhos de investimento, atuar como conselheiro de qualquer plano ou entidade sujeito a A Lei de Segurança de Renda de Aposentadoria do Empregado de 1974, conforme alterada, conta de aposentadoria individual ou anuidade de aposentadoria individual, ou dar conselhos em capacidade fiduciária em relação aos materiais aqui apresentados. Se você é um aposentadorio individual ou outro investidor, entre em contato com seu consultor financeiro ou outro fiduciário não relacionado a Quantopian sobre se qualquer idéia, estratégia, produto ou serviço de investimento descrito aqui pode ser apropriado para suas circunstâncias. Todos os investimentos envolvem risco, incluindo perda de principal. A Quantopian não oferece garantias sobre a precisão ou integridade das opiniões expressas no site. Os pontos de vista estão sujeitos a alterações e podem ter se tornado pouco confiáveis por vários motivos, incluindo mudanças nas condições do mercado ou nas circunstâncias econômicas.
Obrigado. Eu vi esse link. Muito complicado de implementar e escrever tudo no IDE. Na verdade, Satya B tentou aqui tudopático / posts / trading-baskets-co-integrated-with-spy.
A beleza do teste de Johansen é que ele gera autovetores, o que eu acho que você pode usar outros métodos para calcular, embora eu não consiga lembrar no momento, para até 12 ativos e muitas outras coisas, que podem ser usadas para criar um cesta. Eu estava olhando para uma estratégia de arborescência do índice de Ernie e tentando replicá-lo na plataforma da Q para avaliar o desempenho após as taxas / comm, etc. Notei que as tarifas pareciam checar um monte de desempenho. O ABGB & amp; O par de FSLR acima possui uma proporção de 0,75 de sharpe, mas terminou com uma proporção de sharpe de -0,29. Muitos pares aparentemente lucrativos acabaram por não ser lucrativos depois do lance / pedido espalhar, taxas, comissão, etc. Por isso, eu estou olhando para 3 ou mais negociação de pares de ações, e indexar arb. O teste de johansen tornará isso mais fácil de implementar.
Eu continuarei tentando.
O caderno é uma excelente introdução estatística para o comércio de pares, eu recomendo a qualquer pessoa interessada no tópico também olhar para algumas pesquisas financeiras. Anatomia de Pairs Trading é um bom começo, e as referências também são úteis. Mais dois artigos gerais sobre estratégias de arbitragem de risco são Características do Risco e Retorno no Arbitragem de Riscos e Arbitragem Limitada em Mercados de Patrimônio Líquido. Há algumas lições caras que as pessoas aprenderam sobre a execução desses tipos de estratégias, e vale a pena conhecer as lições com antecedência. O forewarned é forearmed.
Anthony, é bom te ver aqui! Procurei uma boa implementação do teste de Johansen por um tempo, mas não consegui encontrar um. Há uma discussão muito longa (mas obsoleta) e solicitação de envio no github sobre como incluí-lo em statsmodels: github / statsmodels / statsmodels / issues / 448 e github / josef-pkt / statsmodels / commit / bf79e8ecb12d946f1113213692db6dac5df2b6e9 É realmente muito ruim Como definitivamente no financiamento quantitativo, isso é bastante utilizado.
O material deste site é fornecido apenas para fins informativos e não constitui uma oferta de venda, uma solicitação de compra ou uma recomendação ou endosso para qualquer segurança ou estratégia, nem constitui uma oferta de prestação de serviços de consultoria de investimento pela Quantopian. Além disso, o material não oferece nenhuma opinião em relação à adequação de qualquer segurança ou investimento específico. Nenhuma informação contida neste documento deve ser considerada como uma sugestão para se envolver ou abster-se de qualquer curso de ação relacionado ao investimento, já que nenhuma das empresas atacadas ou nenhuma das suas afiliadas está a comprometer-se a fornecer conselhos de investimento, atuar como conselheiro de qualquer plano ou entidade sujeito a A Lei de Segurança de Renda de Aposentadoria do Empregado de 1974, conforme alterada, conta de aposentadoria individual ou anuidade de aposentadoria individual, ou dar conselhos em capacidade fiduciária em relação aos materiais aqui apresentados. Se você é um aposentadorio individual ou outro investidor, entre em contato com seu consultor financeiro ou outro fiduciário não relacionado a Quantopian sobre se qualquer idéia, estratégia, produto ou serviço de investimento descrito aqui pode ser apropriado para suas circunstâncias. Todos os investimentos envolvem risco, incluindo perda de principal. A Quantopian não oferece garantias sobre a precisão ou integridade das opiniões expressas no site. Os pontos de vista estão sujeitos a alterações e podem ter se tornado pouco confiáveis por vários motivos, incluindo mudanças nas condições do mercado ou nas circunstâncias econômicas.
@ Aaron. Obrigado pela cabeça. Apreciá-lo vindo do seu. Devo passar algum tempo com esses documentos.
@Thomas. Obrigado pelo link. Como você disse, é um pouco velho. Melhor do que nada, suponho.
Aqui está uma implementação em python para modelos de correção de erros vetoriais. Você também pode usá-lo para encontrar pesos de co-integração. econ. schreiberlin. de/software/vecmclass. py.
Aqui está uma versão do algoritmo de Ernie Chan modificado para trocar vários pares. Esta é uma boa maneira de obter múltiplos fluxos de retorno não correlacionados e reduzir o beta da estratégia geral.
O material deste site é fornecido apenas para fins informativos e não constitui uma oferta de venda, uma solicitação de compra ou uma recomendação ou endosso para qualquer segurança ou estratégia, nem constitui uma oferta de prestação de serviços de consultoria de investimento pela Quantopian. Além disso, o material não oferece nenhuma opinião em relação à adequação de qualquer segurança ou investimento específico. Nenhuma informação contida neste documento deve ser considerada como uma sugestão para se envolver ou abster-se de qualquer curso de ação relacionado ao investimento, já que nenhuma das empresas atacadas ou nenhuma das suas afiliadas está a comprometer-se a fornecer conselhos de investimento, atuar como conselheiro de qualquer plano ou entidade sujeito a A Lei de Segurança de Renda de Aposentadoria do Empregado de 1974, conforme alterada, conta de aposentadoria individual ou anuidade de aposentadoria individual, ou dar conselhos em capacidade fiduciária em relação aos materiais aqui apresentados. Se você é um aposentadorio individual ou outro investidor, entre em contato com seu consultor financeiro ou outro fiduciário não relacionado a Quantopian sobre se qualquer idéia, estratégia, produto ou serviço de investimento descrito aqui pode ser apropriado para suas circunstâncias. Todos os investimentos envolvem risco, incluindo perda de principal. A Quantopian não oferece garantias sobre a precisão ou integridade das opiniões expressas no site. Os pontos de vista estão sujeitos a alterações e podem ter se tornado pouco confiáveis por vários motivos, incluindo mudanças nas condições do mercado ou nas circunstâncias econômicas.
@Delany, Existem métodos disponíveis para tela para pares usando testes estatísticos? Ou esses geralmente são computacionalmente caros?
Estamos trabalhando na forma de tornar os cadernos clonáveis no próprio ambiente de pesquisa. Enquanto isso, os interessados em brincar com o caderno da publicação original podem fazer o download aqui. Depois de fazer o download, faça o upload para sua conta de pesquisa. Se você ainda não possui uma conta de pesquisa, insira um algoritmo no concurso para receber acesso.
@ comerciante bom, o método fornecido no caderno exibirá uma lista de títulos para cointegração, a condição subjacente necessária para negociação de pares. O problema não é tanto a complexidade computacional quanto a perda de poder estatístico. Quanto mais comparações você faz, menos peso você deve colocar em p-valores significativos. Este fenômeno é descrito aqui. Para ser estatisticamente rigoroso, você deve aplicar uma correção Bonferroni aos valores p obtidos a partir de um script de cointegração pairwise. Com o argumento de que quanto mais valores p você gerar, mais provável é que você encontre valores p significativos que sejam falsos e não refletem o comportamento real de cointegração nos títulos subjacentes. Uma vez que o número de comparações feitas ao procurar a cointegração em dois títulos em n cresce a uma taxa de O (n ^ 2), mesmo olhando para 20 títulos tornaria a maioria dos testes estatísticos inúteis. Uma melhor abordagem é criar um pequeno conjunto de títulos candidatos usando a análise dos links econômicos subjacentes. Um pequeno número de testes estatísticos pode então ser feito para determinar quais, se houver, pares são cointegrados. Deixe-me saber se é isso que você quis dizer.
O material deste site é fornecido apenas para fins informativos e não constitui uma oferta de venda, uma solicitação de compra ou uma recomendação ou endosso para qualquer segurança ou estratégia, nem constitui uma oferta de prestação de serviços de consultoria de investimento pela Quantopian. Além disso, o material não oferece nenhuma opinião em relação à adequação de qualquer segurança ou investimento específico. Nenhuma informação contida neste documento deve ser considerada como uma sugestão para se envolver ou abster-se de qualquer curso de ação relacionado ao investimento, já que nenhuma das empresas atacadas ou nenhuma das suas afiliadas está a comprometer-se a fornecer conselhos de investimento, atuar como conselheiro de qualquer plano ou entidade sujeito a A Lei de Segurança de Renda de Aposentadoria do Empregado de 1974, conforme alterada, conta de aposentadoria individual ou anuidade de aposentadoria individual, ou dar conselhos em capacidade fiduciária em relação aos materiais aqui apresentados. Se você é um aposentadorio individual ou outro investidor, entre em contato com seu consultor financeiro ou outro fiduciário não relacionado a Quantopian sobre se qualquer idéia, estratégia, produto ou serviço de investimento descrito aqui pode ser apropriado para suas circunstâncias. Todos os investimentos envolvem risco, incluindo perda de principal. A Quantopian não oferece garantias sobre a precisão ou integridade das opiniões expressas no site. Os pontos de vista estão sujeitos a alterações e podem ter se tornado pouco confiáveis por vários motivos, incluindo mudanças nas condições do mercado ou nas circunstâncias econômicas.
Eu discordo um pouco sobre o problema com muitas comparações. A correção de Bonferroni é apropriada quando você está procurando a verdade. Por exemplo, se você tiver um questionário com 1.000 itens e você o dê para pessoas com e sem câncer, você encontrará em média 50 itens que se correlacionam com o câncer no nível de significância estatística de 5%, mesmo que nada na O questionário está relacionado ao câncer. Se você considerar combinações de dois ou mais itens, você pode gerar quantos correlatos você gosta.
Mas ao projetar estratégias de negociação automatizadas, as relações coincidentes não o prejudicam muito. Eles adicionam ruídos aleatórios e custos de negociação aos seus resultados. Uma vez que poucos resultados são 100% sem sentido, a maioria das relações tem pelo menos um pequeno grau de persistência, não é crítico para filtrar a sua estratégia para os mais rigorosamente validados. Os lucros são importantes, não a verdade. Bonferroni e métricas semelhantes o empurram para as relações mais confiáveis de forma estatística, que geralmente não são de utilidade econômica.
Se por "análise dos links econômicos subjacentes" Você quer dizer começar com pares naturais como duas empresas similares na mesma indústria, não encontrou isso útil. Basicamente, as pessoas percebem as coisas óbvias. Se você quer dizer pensar em relações menos óbvias, especialmente coisas que são invisíveis nos dados usuais que as pessoas usam, então eu concordo. Idealmente, você quer uma história econômica valestável para a dupla relação, o que explica tanto por que existe e por que não é arbitrado. Não só isso protege contra a mineração de dados, mas isso significa que você pode medir se o efeito continua funcionando (sem isso, a única maneira de saber que a estratégia não funciona é quando você perde dinheiro).
Bom trabalho. Eu não leio seu caderno por linha, mas eu posso dizer que será uma ótima adição à biblioteca de exemplo de Quantopian. E acompanhamento com algos compartilhados - bom movimento.
Você pode dar uma olhada no caderno que postei, quantopian / posts / analysis-of-minute-bar-trading-volumes-of-the-etfs-spy-and-sh. Para visualizar como um determinado par vai dentro e fora da cointegração, você poderia fazer uma trama similar. A aplicação do teste estatístico 390 vezes por dia de negociação ao longo de muitos anos exigiria alguma paciência.
@Aaron Estou correto em ler o seu argumento, geralmente, da seguinte forma?
- No mundo real, Bonferroni é muito restritivo e o número de pares rentáveis que você perde através da correção supera a certeza estatística que você ganha.
Eu acho que concordamos quanto ao ponto final que você faz. Eu acho que muitas pessoas da análise de links econômicos fazem são simplistas e ignoram as relações potencialmente interessantes que são mais propensas a conter alfa não arbitralizada.
@ Obrigado obrigado. Estamos realmente planejando expandir a biblioteca de exemplo para um currículo de finanças cuidadoso completo ministrado com cadernos e algoritmos complementares. Nós vamos ter uma série de palestras de verão à medida que desenvolvemos mais tópicos, então fique atento para aqueles. Seu caderno é muito legal e eu me pergunto o quão estável os índices de cointegração são mesmo para pares fortemente cointegrados. Infelizmente, eu não acho que eu tenha tempo de analisar isso em um futuro próximo o que com a produção de nossos outros cadernos curriculares. No entanto, estamos à procura de contribuidores convidados. Se você tiver cadernos, você gostaria de ser apresentado em nosso currículo com crédito total para o (s) autor (es), envie-os para o meu caminho e eu verifico se eles se encaixam em nosso conteúdo atual.
O material deste site é fornecido apenas para fins informativos e não constitui uma oferta de venda, uma solicitação de compra ou uma recomendação ou endosso para qualquer segurança ou estratégia, nem constitui uma oferta de prestação de serviços de consultoria de investimento pela Quantopian. Além disso, o material não oferece nenhuma opinião em relação à adequação de qualquer segurança ou investimento específico. Nenhuma informação contida neste documento deve ser considerada como uma sugestão para se envolver ou abster-se de qualquer curso de ação relacionado ao investimento, já que nenhuma das empresas atacadas ou nenhuma das suas afiliadas está a comprometer-se a fornecer conselhos de investimento, atuar como conselheiro de qualquer plano ou entidade sujeito a A Lei de Segurança de Renda de Aposentadoria do Empregado de 1974, conforme alterada, conta de aposentadoria individual ou anuidade de aposentadoria individual, ou dar conselhos em capacidade fiduciária em relação aos materiais aqui apresentados. Se você é um aposentadorio individual ou outro investidor, entre em contato com seu consultor financeiro ou outro fiduciário não relacionado a Quantopian sobre se qualquer idéia, estratégia, produto ou serviço de investimento descrito aqui pode ser apropriado para suas circunstâncias. Todos os investimentos envolvem risco, incluindo perda de principal. A Quantopian não oferece garantias sobre a precisão ou integridade das opiniões expressas no site. Os pontos de vista estão sujeitos a alterações e podem ter se tornado pouco confiáveis por vários motivos, incluindo mudanças nas condições do mercado ou nas circunstâncias econômicas.
No mundo real, o Bonferroni é muito restritivo e o número de pares rentáveis que você perde através da correção supera a certeza estatística que você ganha.
Não precisamente. Sim, Bonferroni é muito restritiva no sentido de que lhe dá poucos pares, mas Bonferroni também o dirige para os pares errados.
No exemplo de um questionário com 1.000 itens fornecidos a pacientes com câncer e pacientes que não são câncer, é provável que a maioria dos itens não tenha efeito sobre o câncer ou pelo menos os efeitos fracos e complexos que ele é não vale a pena usá-los para obter um conselho médico. Então, se você quer um significado de 5%, você testa cada item no nível de 0,005% (você quer 3,9 desvios-padrão, e não apenas 1,6). Você não se importa com isso, porque qualquer efeito real forte o suficiente para a matéria provavelmente aparecerá com um forte significado. Se você não fez Bonferroni, você terminou com 50 recomendações mesmo quando nenhum dos itens importou, e muitos conselhos inúteis.
Aliás, Bonferroni é uma correção muito conservadora, e há mais sofisticados que permitem mais itens.
Mas se você tiver 1.000 pares para testar, é provável que muitos deles tenham algum grau de previsibilidade cointegral. Mesmo que não haja previsibilidade, incluindo o par extra apenas adiciona um pouco de ruído à sua estratégia, o que não é terrível. Além disso, você não acredita que qualquer um deles tenha previsibilidade tão forte que qualquer um teria percebido e arbitrado. Portanto, é razoável considerar todos os pares com 5% de significância ou menos, e filtrá-los usando critérios econômicos ou outros não relacionados aos dados. Selecionar apenas as relações estatísticas mais fortes não é sábio.
Você pode configurar isso em uma estrutura bayesiana se quiser consistência e precisão; ou você pode usar apenas regras ad hoc.
Apenas para o il-pair-literated que quer aprender. deve haver uma história por trás do par? Deveria haver uma explicação lógica? Eu brinquei com os pares e encontrei, por exemplo, o trabalho da MorganStanley e da Expedia. mas por que? Ou não queremos saber por quê?
deve haver uma história por trás do par?
Esta é, na verdade, uma questão semântica e não financeira. Se você adotou uma abordagem estatística pura sem consideração dos pares reais, você acabaria com centenas ou milhares de pares, incluindo alguns sobrepostos. Então, nós não chamaríamos de estratégia de negociação de pares, mas uma estratégia de equidade longa e curta.
A idéia de troca de pares é que você pode obter uma visão adicional, considerando razões específicas para a dependência entre os estoques; e essa percepção pode resultar em um posicionamento mais preciso, e também evitar grandes perdas quando a relação se rompe.
Relações óbvias, como dois estoques de grande tampa na mesma indústria, tendem a não ser úteis. Isso é confuso às vezes, porque alguns dos principais negociantes de pares adiantados envolveram esses pares, e eles ainda são usados para exemplos na maioria dos textos. Mas muitas pessoas estão observando esses spreads muito de perto para obter os altos índices de Sharpe que você precisa para estratégias não diversificadas, como troca de pares. Deixe esses Sharpes marginais para pessoas de longo prazo que têm muito mais posições.
Além disso, quando falamos sobre um motivo para a relação de pares, estamos falando sobre ambos um positivo - por que é difícil imaginar um mundo em que os valores dessas empresas divergem de suas proporções históricas - e um negativo - Por que essas ações respondem a diferentes notícias econômicas? Então, para duas empresas quase idênticas, a primeira questão é fácil, mas a segunda é difícil. Para duas empresas aparentemente não relacionadas como MS e EXPE, é o inverso. Você pode dizer algo como: "Em uma boa economia, o Morgan Stanley ganha muitos negócios e as pessoas viajam muito", & quot; Mas isso é basicamente verdadeiro para quase duas empresas.
O motivo dos pares clássicos foi duas empresas que responderam aos mesmos fatores econômicos básicos, dizem os preços do petróleo ou as taxas de juros ou a força do dólar norte-americano, mas em diferentes pontos da cadeia de suprimentos, dizem os preços do petróleo bruto versus as receitas da estação de serviço. Um único link não é bom o suficiente, praticamente todas as empresas respondem a esses fatores. Mas você pode encontrar pares que são combinados em fatores mais estreitos, por exemplo, atividade de fracking nos Estados Unidos do Nordeste ou precipitação na Califórnia central, ou que correspondem a direção em uma série de fatores amplos. Ou você pode encontrar duas empresas que estão atualmente em empresas similares hoje, mas que por razões históricas estão listadas em diferentes setores. Outra situação comum é duas empresas envolvidas em diferentes pontos do ciclo de vida de bens duráveis; construtores de casas e lojas de móveis com geografia similar, por exemplo.
De qualquer forma, quando você tem um motivo, você tem coisas para monitorar para afinar sua posição; e para alertá-lo se uma grande deslocação é uma grande oportunidade comercial ou um sinal do que a relação histórica quebrou. Se você não tem um motivo, você melhor terá muita diversificação, o que significa que você não pode pagar o trabalho de análise específica para cada par.
Você não admitiria que, se um casal tiver uma história, então essa história é conhecida e, portanto, não é lucrativa por pessoas que gostam de negociadores de varejo lentos para negociar? E se alguém pudesse extrair os dados e descobrir, através dos dados, histórias inesperadas que poderiam pelo menos competir no espaço de troca de pares? Eu vejo seu ponto em manter um grande grupo de pares se as histórias que conectam os participantes são fracas ou inexploradas, mas ainda assim, se os submissos desejamos participar porque não usamos essa técnica? Ou você sustenta que os comerciantes de varejo podem capturar e lucrar com spreads de pares anômalos de casais bem conhecidos?
Você não admitiria que, se um casal tiver uma história, então essa história é conhecida e, portanto, não é lucrativa por pessoas que gostam de negociadores de varejo lentos para negociar?
Não, eu não concordaria com essa visão. O comércio de pares tende a ser de baixa capacidade, especialmente em estoques de menor capital, e requer muito trabalho. Não é atraente para os gerentes de ativos porque os valores de investimento e as características de risco são erráticas. É principalmente prosseguido por comerciantes profissionais individuais a tempo inteiro, que podem seguir uma dúzia de pares, além de algumas dúzias de outras estratégias, e comerciantes semi-profissionais que estão dispostos a levar o que o mercado lhes dá e ficar em dinheiro quando nenhuma das suas estratégias é atraente. Há mais bons pares do que os comerciantes competentes que os perseguem.
Em princípio, você pode encontrar bons pares usando um filtro automatizado inteligente, ou lendo e pensando. Meu sentimento geral é o primeiro é mais difícil, e se você quiser fazê-lo, você quer fazê-lo para identificar grandes números de pares bastante bons em vez de dois ou três grandes pares. Nesse caso, eu digo simplesmente mudar para equidade longa e curto e esquecer pares. A coisa boa sobre ler e pensar é que os calçados mais bons são preguiçosos e preferem deixar o computador fazer o trabalho. Então, você está competindo com não-quentes, alguns dos quais são muito bons em ler e pensar, mas estão em grande desvantagem para alguém com um computador que conhece um pouco de matemática.
Eu não quero encontrar como dogmático, qualquer pessoa que faz o que outras pessoas lhes dizem não é provável que encontre grande sucesso em qualquer tipo de negociação. Se você acha que pode projetar um algoritmo para identificar bons pares, não há danos na tentativa. Simplesmente não me pareceu a abordagem mais promissora.
. Demora muito trabalho.
Sim. O dinheiro fácil de troca de pares foi feito há muito tempo. Histórias lucrativas em ações de menor capital, embora expõe um par para as aberrações da menor volatilidade da empresa não? & quot; Whoops, que o estoque solar perdeu seu contrato principal. Ou, uau, aquele perfurador acabou de receber um contrato estatal inesperado. & Quot; E então a história é reescrita, ou você ou quatro páginas são arrancadas. Pode-se pegar tais prelúdios para mudanças na história, se alguém observasse apenas uma dúzia de histórias. Mas aqui, onde estamos procurando evitar a exibição de histórias - indo totalmente automatizado, nós seríamos pregados por tais falhas narrativas em apenas alguns relacionamentos par.
Quando você diz mudar para ações longas / curtas, você pareceria defender o abandono da pesquisa estatística de histórias obscuras (talvez caprichosas) em vez de reversão média mais ampla - isso é verdade? Mas, se alguém tem as ferramentas, por que não criar dezenas e dezenas de negócios de dupla estranhos. Certo, as histórias podem não existir. Mas, novamente, talvez você descubra 10 ou 20 que são únicos. E através de um processo de eliminação dos parceiros mal empurrados, você acaba com um conjunto gerenciável que é capaz de dançar com as estrelas? Este site não é nada, senão um experimento massivo na mineração de dados, não?
Mais uma vez, eu não estou tentando leis legais aqui, mas as duas abordagens diretas são (a) tentar encontrar alguns pares que você pode entender ou (b) esquecer os pares e tentar construir um grande portfólio de longos e shorts sem se preocupar em juntar estoques ou fazer pesquisas não autorizadas. Em outras palavras (a) pesquisa inteligente nicho ou (b) mineração maciça de dados.
Tentando dividir a diferença ao encontrar dúzias de pares, mas não fazer a pesquisa personalizada necessária para entender cada um parece subóptima.
tente encontrar alguns pares que você possa entender.
Se eu estiver lendo coisas corretamente, por "entender" você quer dizer que deve haver uma história intuitiva subjacente por trás do relacionamento, eu suponho que haja menos risco de que a relação desapareça de repente? Are you talking about a kind of narrative, "The reason we think this is happening, but can't really explain with a model, is. & quot; or an explanatory quantitative model that provides the story behind the relationship? Say I find a pairs trade based on the idea that when consumers buy lots of eggs, bacon sales drop off, and vice versa. I could make up a story that people can only eat so much for breakfast, and leave it at that. I have a warm, fuzzy feeling, and if I'm a professional trader, hopefully my management will feel warm and fuzzy, too. But is the risk really any different without the story? Unless I actually find a relevant study on breakfast eating, or conduct one myself, then I could just be deluded. And if the underlying cause can't be coded into a set of rules, then it is not really automated quantitative trading, right? As a Quantopian user who doesn't do this sort of thing for a living, I need to get an algo in the Quantopian hedge fund, let it run, and collect a check. No time for doing lots of offline analyses.
There are more good pairs than there are competent traders chasing them.
sounds like the land of milk and honey for us inhabitants of Quantopia. This would say that the Quantopian team should think about churning out candidate pairs for their 35,000+ users to examine like a bunch of ants, trying to come up with stories for a subset of them ("I'll take XYZ & PDQ, do some research, and see if I can find a 'story' to support the relationship.").
I'm just trying to sort out if any of this can be reduced to practice for Joe Schmo Quantopian user, or if it is a hopeless endeavor. Is there a path for Quantopian to get hundreds of lucrative, scalable pairs trading algos for their $10B hedge fund (keep in mind that by my estimation, they need several thousand distinct algos in the fund)? Or is this all a bunch of blah, blah, blah?
I've tried the automated searching of pairs/baskets, using the public knowledge techniques, and though I haven't gone through them all with my tick-level back-tester, the few that I did examine personally were largely worthless; the supposed spread mean-reversion that my grid search turned up was just spurious or due to bid-ask bounce.
However, I do know for a fact that people run decently profitable automated pairs trading portfolios. I take that to mean that it is possible, but the way that I approached it was naive. Perhaps the legwork method is the way to go, coming up with theses about drivers and then looking for portfolios that would express the theses, with the actual hedge ratio construction done "rigorously" using Kalman filters or whatever.
My take is that chatting about pairs trading is wonderful, but there should be a focus on reducing it to practice, with some sort of approachable workflow, so that a Quantopian user can sit down in his pajamas with a cup of coffee on a rainy day and actually come up with a halfway decent algo that would have a shot at getting into the crowd-sourced Q fund. For example, we have:
. try to find a few pairs you can understand.
Perhaps the legwork method is the way to go, coming up with theses about drivers.
ESTÁ BEM. So what's the workflow for your typical Q user? Keep in mind, this needs to be scalable. it won't do Q any good if only users with an advanced degree and 20 years of industry experience can be successful. If the answer is, "Well, there is no workflow. you just need to know" then pairs trading won't be approachable on Q. We have Aaron's "reading and thinking" recommendation above, but read what?
Also, I'd seen somewhere that there are techniques for synthesizing trading pairs, from baskets of securities. Does this work? Or does one effectively end up with the long-short equity portfolio referred to by Aaron Brown above?
The kind of warm-and-fuzzy story you mention is worthless for investing, although as you say it can reassure investors and regulators. What you're looking for is covariates to refine your strategy and, most important, warn you when it's not going to work. The quant trap is that when your relation breaks it simply looks more attractive to your model, and you spiral to doom.
The eggs-and-bacon story is actually the reverse of what you want. That says there is a fixed total consumption, so the total amount consumed of both products is fixed, meaning they are negatively cointegrated. If they were positively correlated, say because investors bid up or down all breakfast foods as a group, you would do anti-pairs trading. You're looking for things that have to be in some kind of long-term balance, but move is opposite directions in the short-term. A warm-and-fuzzy story might be residential construction and furniture sales, in the short run if people are saving for down payments they're not buying furniture, and newly house poor families are making due with old furniture and underfurnishing. But in the long run, houses will get furnished. This would never be a pairs trading story because it's relating entire sectors. To exploit this, you'd build a model tracing the full life cycle, and likely involving other factors like interest rates and family demographics and migration patterns, and trade large numbers of stocks.
To keep this practical, here is a Pairs Trading for Dummies recipe (I mean that respectfully, I'm a big fan for For Dummies books).
Run some kind of statistical screen to identify promising pairs trading targets. Don't look for extreme statistical significance, just some moderate level to screen out the noise like 5% or 1%. It can help to limit one member of each pair to companies or regions you know something about.
Clearly this is for someone who has quant skills, but also general research skills and business judgment.
Run some kind of statistical screen to identify promising pairs trading targets. Don't look for extreme statistical significance, just some moderate level to screen out the noise like 5% or 1%. It can help to limit one member of each pair to companies or regions you know something about.
it sounds like it could be productive for Quantopian to open-source some efficient tools for the screening (and maybe up their game in terms of computing resources). Let's say I'm an expert on company XYZ and maybe I could narrow down my field of candidate securities for comparison to NASDAQ-listed stocks, of which there are about 3,000. So, it is an O(N) computing problem, not O(N^2) as Delaney mentions above for the general screening problem. But, I'd like to compute the statistics on a rolling basis, every trading minute over 2 years. I'd have:
(3000 comparisons/minute)(390 minutes/day)(252 days/year)(2 years) = 589,680,000 comparisons.
Is something like this at all feasible on the Quantopian research platform? If not, how would I scale it back to something that would actually run in a reasonable amount of time (a few days at most) but still provide useful results?
I'm playing around with the algorithm by Ernie Chan that you posted.
Surprisingly, it fails entirely when I swap the pair, see the attached backtest (I've only changed the order).
Also, how to treat the negative hedge (beta from OLS). With the current implementation we go long (short) on both positions when the sign of the hedge is the same as the sign of the z-score, which you don't expect from pair trading. What economic reason can lead to such cointegrations?
Not sure exactly why it's failing when you swap the order. Seems like the math may not be robust to an 'upside-down' par. The hedge ratio comes from the formal definition of cointegration, which is that for some b and u_t = y_t - b * x_t, u_t is stationary (the mean stays the same). Therefore we try to estimate the b parameter in each trade so that we can correctly produce a stationary drift between the two securities. It can be the case that the two are negatively cointegrated, whether there's a strong economic reason for this I'm not sure. You might try putting in place restrictions to not trade when you have double long or double short positions, or employing a better estimation method for b (more data points for example).
All of the issues you bring up are very sophisticated improvements, and making these improvements to the algorithm could result in something very good. I don't have cut and dried solutions for you, as you are now dancing around the edge of what is known about algorithmic trading. A lot of it comes down to rigorously testing different signal processing methods to see which yield the best out of sample performance. Also, like you said it's important to let the economic reasoning drive the creation of your model.
O material deste site é fornecido apenas para fins informativos e não constitui uma oferta de venda, uma solicitação de compra ou uma recomendação ou endosso para qualquer segurança ou estratégia, nem constitui uma oferta de prestação de serviços de consultoria de investimento pela Quantopian. Além disso, o material não oferece nenhuma opinião em relação à adequação de qualquer segurança ou investimento específico. Nenhuma informação contida neste documento deve ser considerada como uma sugestão para se envolver ou abster-se de qualquer curso de ação relacionado ao investimento, já que nenhuma das empresas atacadas ou nenhuma das suas afiliadas está a comprometer-se a fornecer conselhos de investimento, atuar como conselheiro de qualquer plano ou entidade sujeito a A Lei de Segurança de Renda de Aposentadoria do Empregado de 1974, conforme alterada, conta de aposentadoria individual ou anuidade de aposentadoria individual, ou dar conselhos em capacidade fiduciária em relação aos materiais aqui apresentados. Se você é um aposentadorio individual ou outro investidor, entre em contato com seu consultor financeiro ou outro fiduciário não relacionado a Quantopian sobre se qualquer idéia, estratégia, produto ou serviço de investimento descrito aqui pode ser apropriado para suas circunstâncias. Todos os investimentos envolvem risco, incluindo perda de principal. A Quantopian não oferece garantias sobre a precisão ou integridade das opiniões expressas no site. Os pontos de vista estão sujeitos a alterações e podem ter se tornado pouco confiáveis por vários motivos, incluindo mudanças nas condições do mercado ou nas circunstâncias econômicas.
Obrigado pela sua resposta rápida.
This is actually a very valuable response, as I was afraid I might have missed something obvious.
O material deste site é fornecido apenas para fins informativos e não constitui uma oferta de venda, uma solicitação de compra ou uma recomendação ou endosso para qualquer segurança ou estratégia, nem constitui uma oferta de prestação de serviços de consultoria de investimento pela Quantopian. Além disso, o material não oferece nenhuma opinião em relação à adequação de qualquer segurança ou investimento específico. Nenhuma informação contida neste documento deve ser considerada como uma sugestão para se envolver ou abster-se de qualquer curso de ação relacionado ao investimento, já que nenhuma das empresas atacadas ou nenhuma das suas afiliadas está a comprometer-se a fornecer conselhos de investimento, atuar como conselheiro de qualquer plano ou entidade sujeito a A Lei de Segurança de Renda de Aposentadoria do Empregado de 1974, conforme alterada, conta de aposentadoria individual ou anuidade de aposentadoria individual, ou dar conselhos em capacidade fiduciária em relação aos materiais aqui apresentados. Se você é um aposentadorio individual ou outro investidor, entre em contato com seu consultor financeiro ou outro fiduciário não relacionado a Quantopian sobre se qualquer idéia, estratégia, produto ou serviço de investimento descrito aqui pode ser apropriado para suas circunstâncias. Todos os investimentos envolvem risco, incluindo perda de principal. A Quantopian não oferece garantias sobre a precisão ou integridade das opiniões expressas no site. Os pontos de vista estão sujeitos a alterações e podem ter se tornado pouco confiáveis por vários motivos, incluindo mudanças nas condições do mercado ou nas circunstâncias econômicas.
Here is a temp website which has similarity of movement information, which is about the same idea as pairs. StockA is the stock you are comparing to, row is how this pair ranks to all pairs, (its row count). It only contains information for the top 5000 or so pairs.
The data is pulled from the period of Aug 2017 to Feb 2018 and is an average of each day.
(Change IYR to symbol wanted)
The idea behind the algorithm is not actually for pairs trading, but is for similarity of how a pair moves. I will leave this test site up for a few weeks.
Thanks Delaney. It's a great starting step for pair trading technique.
I am working on the missing piece of this strategy which is how to use Quantopian Research environment to find statistical cointegration stock/ETF pairs from entire universe or from the same sectors. After I construct good pairs, then I can use the Notebook you provided for further analysis and backtest.
Does anyone have any suggestion for me?
I have a question for those trading pairs.
How do you deal with the large processing requirements?
I coded some tests for co-integration and results per combination take roughly 1 second.
I can get this down with parallel processing and by storing data locally but a universe of 2000 stocks will still have 4000000 potential combinations.
Perhaps pointing out the obvious, but .
A pre-screening tool, or pre-screening done for you for a fee .
When I was researching this sort of thing a couple of years ago, the baskets of 3 and 4 of only a few hundred ETFs took months on my MacBook. And they were all mostly garbage, though I never actually went through them all. I probably should.
If I remember correctly, that was 1.6T combinations, or something like that.
The formula is R to the Sterling S, divided by S!
so, for 4000 stocks, it would be.
(4000 x3999)/2! or, about 8 million pairs made from the 4000 typical stocks. for 3 stocks considered together, there would be 4000 x 3999 x 3998 /3!
You can prune the possible tree pretty easily though. I believe most stocks behave as if they really were ETFs (at the market neutral way of looking at it only) and can be represented by a group of other stocks, that move with their same fundamentals. You only have to know what sectors they move with, and then check for pairs against this.
So, for example, with HLF, it moves with consumer, several currencies, emerging markets, and a few others. It is hard to separate out exactly as emerging markets also move with currency, so which is which becomes the question.
For two typical tech stocks that appear to be very similar, it may well be the case that their main difference is which currencies they move with. So, for most of the time, they may appear co-integrated, but then, when there is a difference in currencies that affects one a lot, and not so much the other, they then move apart.
I was working on an algorithm to determine the underlying components, (so to speak) that collectively make each stock behave with the same logic as if it was a multi-sector ETF. (where the underlying stocks are a mystery to be solved) I have most of it done, and I believe I have enough done to prove it does work this way, but I lost my real time quote stream a few months ago, and so stopped working on it.
since my algorithm would need to consider up to 15 underlying components to solve this problem, it would be 4000 x 3999 x3998 . 3985/15! So, I have to trim it. The link I posted a few messages above shows some of the results of this work, where I first determine the possible stocks to consider, for each symbol.
It is my belief that the market is essentially swamped out with pairs trading, and this is why it works so mathematically perfect for each stock to behave as if it is an ETF.
There is certainly a high computational cost to looking at all possible pairs. However, there is a tradeoff to this approach, as you put yourself at a high risk for multiple comparisons bias. Please see earlier in this thread for a fairly complete discussion of this issue. Regardless of which method you use to select pairs, you'll want to do some additional validation using the notebook and then use the algorithms in this thread to try backtesting a strategy.
O material deste site é fornecido apenas para fins informativos e não constitui uma oferta de venda, uma solicitação de compra ou uma recomendação ou endosso para qualquer segurança ou estratégia, nem constitui uma oferta de prestação de serviços de consultoria de investimento pela Quantopian. Além disso, o material não oferece nenhuma opinião em relação à adequação de qualquer segurança ou investimento específico. Nenhuma informação contida neste documento deve ser considerada como uma sugestão para se envolver ou abster-se de qualquer curso de ação relacionado ao investimento, já que nenhuma das empresas atacadas ou nenhuma das suas afiliadas está a comprometer-se a fornecer conselhos de investimento, atuar como conselheiro de qualquer plano ou entidade sujeito a A Lei de Segurança de Renda de Aposentadoria do Empregado de 1974, conforme alterada, conta de aposentadoria individual ou anuidade de aposentadoria individual, ou dar conselhos em capacidade fiduciária em relação aos materiais aqui apresentados. Se você é um aposentadorio individual ou outro investidor, entre em contato com seu consultor financeiro ou outro fiduciário não relacionado a Quantopian sobre se qualquer idéia, estratégia, produto ou serviço de investimento descrito aqui pode ser apropriado para suas circunstâncias. Todos os investimentos envolvem risco, incluindo perda de principal. A Quantopian não oferece garantias sobre a precisão ou integridade das opiniões expressas no site. Os pontos de vista estão sujeitos a alterações e podem ter se tornado pouco confiáveis por vários motivos, incluindo mudanças nas condições do mercado ou nas circunstâncias econômicas.
Indeed, Aaron Brown's advice is gold.
What is "multiple comparisons bias"? I'm lazy and don't feel like sifting through this rather extensive discussion thread.
I find it hard to believe that pairs trading would work as a scalable hedge fund strategy (be able to pour $10's of millions into a single pair). Is there any evidence? In other words, why is Quantopian promoting this?
This is one of the best threads on the site.
It scales; you can trade hundreds of pairs.
Multiple comparisons is a core problem in all of statistics, right up there with overfitting. The general idea is that if you run 100 statistical tests on random data, you should still expect to get 5 below a 5% cutoff and 1 below a 1% cutoff based on random chance. This is true when testing various iterations of a model, or many pairs. Because the number of pairs is O(n^2) you should expect to get a lot of spurious p-values when looking for pairs. A naive strategy of just looping through pairs won't work, you need to be a bit more sophisticated.
And yes you trade many pairs with low exposure to each. That said, I think that long-short equity strategies may be a better first bet to get into the fund at this point, just based on robustness and capacity.
O material deste site é fornecido apenas para fins informativos e não constitui uma oferta de venda, uma solicitação de compra ou uma recomendação ou endosso para qualquer segurança ou estratégia, nem constitui uma oferta de prestação de serviços de consultoria de investimento pela Quantopian. Além disso, o material não oferece nenhuma opinião em relação à adequação de qualquer segurança ou investimento específico. Nenhuma informação contida neste documento deve ser considerada como uma sugestão para se envolver ou abster-se de qualquer curso de ação relacionado ao investimento, já que nenhuma das empresas atacadas ou nenhuma das suas afiliadas está a comprometer-se a fornecer conselhos de investimento, atuar como conselheiro de qualquer plano ou entidade sujeito a A Lei de Segurança de Renda de Aposentadoria do Empregado de 1974, conforme alterada, conta de aposentadoria individual ou anuidade de aposentadoria individual, ou dar conselhos em capacidade fiduciária em relação aos materiais aqui apresentados. Se você é um aposentadorio individual ou outro investidor, entre em contato com seu consultor financeiro ou outro fiduciário não relacionado a Quantopian sobre se qualquer idéia, estratégia, produto ou serviço de investimento descrito aqui pode ser apropriado para suas circunstâncias. Todos os investimentos envolvem risco, incluindo perda de principal. A Quantopian não oferece garantias sobre a precisão ou integridade das opiniões expressas no site. Os pontos de vista estão sujeitos a alterações e podem ter se tornado pouco confiáveis por vários motivos, incluindo mudanças nas condições do mercado ou nas circunstâncias econômicas.
There is more electricity used in the state of New Jersey doing calculations on the market than there is electricity used in that state for manufacturing. Pairs strategy likely accounts for at least 50% of this usage as even HFT likely often uses some version of deviation from the mean. It is my opinion that the market is so saturated with pairs trading that given the price of any ten tickers that had no big news, one could deduce the price of the rest of the market and be within 0.7% of the actual price, 90% of the time for the top traded 4000 stocks. (and it could probably be done with less than ten tickers. ) So, for a 30 dollar stock, the margin of error would be about a quarter. This is how precisely, compared to each other, I think they move. Until there is news.
It sounds like a corollary to the reciprocal of the law of large numbers; given enough samples you will always find something to fit.
I would reintroduce the concept I proposed in an article in S&C last spring ; the directed acyclic graph or DAG. Using thousands of correlated or cointegrated pairs I built groups from them. Those groups were essentially social graphs of securities. You can search here for DAG, but briefly, you can use the concept of pair trading, that is, fade and favor the divergences, but with a correlated group. And such a group is assembled, dynamically, from a list of pairs that are "friends of friends". It's a pairs strategy, essentially, but with lower risk and less work managing hundreds of separate strategies.
That said, I think that long-short equity strategies may be a better first bet to get into the fund at this point, just based on robustness and capacity.
Have people been coming up with good ones? If so, what proportion are using the new data sets? If not, why not, do you think that is?
I haven't been focusing on them at all, mostly because there's a problem of opportunity cost; if I spend all my time looking for equity long-short algos, not only is there a chance I don't find anything, but if I do, there's still a chance that Quantopian doesn't select it, and since I cannot trade them myself, that time is wasted (unless I pitch it to other funds I suppose). If I look for algos that I personally can trade, and I find some, then I trade them.
I realize there's an unfortunate schism wherein I am using your platform but not contributing to your business model, so if you have any ideas how I can help without wasting my time writing algos that only work high account levels, please let me know. Pairs trading/statistical arbitrage might be one solution, but I've found them very difficult to implement; anything that looks promising in Quantopian fails the backtest when using dividend-adjusted bid-ask tick data, so I might shift my focus back to building my own lower latency infrastructure for a while.
I would reintroduce the concept I proposed in an article in S&C last spring ; the directed acyclic graph or DAG. Using thousands of correlated or cointegrated pairs I built groups from them.
Legal. Yeah, pretty similar. The DAG though was used specifically to find the networked graph. Those trees might embody the same thing, not sure. But I'd guess the idea is approximate.
Why would anyone want to pairs trade when trading a Minimum Spanning Tree or correlated network graph of stocks is so much safer and easier? I've built dozens of pairs strategies and the directionality of the pair always broke the model. And all pairs I ever tested all went directional at some point -- beyond the account's ability to Martingale down.
Have people been coming up with good ones? If so, what proportion are using the new data sets? If not, why not, do you think that is?
I can't release any specific data on this. I can say that there's a lag between when we update product features/try to educate people about algorithm writing techniques (larger universe size, shorting), and when new strategies start appearing. We'd love more large universe strategies right now and I'm trying to figure out ways to make it easier for folks to develop large universe long-short strategies using pipeline.
I haven't been focusing on them at all, mostly because there's a problem of opportunity cost; if I spend all my time looking for equity long-short algos, not only is there a chance I don't find anything, but if I do, there's still a chance that Quantopian doesn't select it, and since I cannot trade them myself, that time is wasted (unless I pitch it to other funds I suppose). If I look for algos that I personally can trade, and I find some, then I trade them.
I realize there's an unfortunate schism wherein I am using your platform but not contributing to your business model, so if you have any ideas how I can help without wasting my time writing algos that only work high account levels, please let me know. Pairs trading/statistical arbitrage might be one solution, but I've found them very difficult to implement; anything that looks promising in Quantopian fails the backtest when using dividend-adjusted bid-ask tick data, so I might shift my focus back to building my own lower latency infrastructure for a while.
Totally reasonable. We don't release our product with the expectation that everybody will use it to develop strategies for the fund, we also want to support your use case of personal trading. We also understand there's a conflict between pushing people to write high capacity market neutral long-short strategies, when those will never work on their own money. What I'm trying to figure out is ways to make the workflow of producing and evaluating factors easier, because once you have a factor-based ranking system, it's pretty easy to slot that into an existing long-short algorithm using pipeline. I'm working on sharing a pipeline algorithm with the community and attaching it to the lectures page in an effort to get more cloning and tweaking going on.
O material deste site é fornecido apenas para fins informativos e não constitui uma oferta de venda, uma solicitação de compra ou uma recomendação ou endosso para qualquer segurança ou estratégia, nem constitui uma oferta de prestação de serviços de consultoria de investimento pela Quantopian. Além disso, o material não oferece nenhuma opinião em relação à adequação de qualquer segurança ou investimento específico. Nenhuma informação contida neste documento deve ser considerada como uma sugestão para se envolver ou abster-se de qualquer curso de ação relacionado ao investimento, já que nenhuma das empresas atacadas ou nenhuma das suas afiliadas está a comprometer-se a fornecer conselhos de investimento, atuar como conselheiro de qualquer plano ou entidade sujeito a A Lei de Segurança de Renda de Aposentadoria do Empregado de 1974, conforme alterada, conta de aposentadoria individual ou anuidade de aposentadoria individual, ou dar conselhos em capacidade fiduciária em relação aos materiais aqui apresentados. Se você é um aposentadorio individual ou outro investidor, entre em contato com seu consultor financeiro ou outro fiduciário não relacionado a Quantopian sobre se qualquer idéia, estratégia, produto ou serviço de investimento descrito aqui pode ser apropriado para suas circunstâncias. Todos os investimentos envolvem risco, incluindo perda de principal. A Quantopian não oferece garantias sobre a precisão ou integridade das opiniões expressas no site. Os pontos de vista estão sujeitos a alterações e podem ter se tornado pouco confiáveis por vários motivos, incluindo mudanças nas condições do mercado ou nas circunstâncias econômicas.
I share Simon's sentiment. I've continued to participate in the contests, but the idea of spending tens (hundreds?) of hours trying to come up with an uber algo that will compete with the big dogs sounds like a lot of work, with a very uncertain pay-off (it's not even clear that you are still working on the hedge fund. any substantive news?). The pipeline thingy has a bit of a learning curve, so I haven't taken that on yet (the fact that lots of obscure modules need to be imported is a red flag). That said, if there were good working examples that could be tweaked, I might give it a go.
What I'm trying to figure out is ways to make the workflow of producing and evaluating factors easier, because once you have a factor-based ranking system, it's pretty easy to slot that into an existing long-short algorithm using pipeline.
Why don't you get all of the Q eggheads together for 1 week and see if you can come up with a long-short algo that would be Q hedge-fundable, and publish it (and better yet, actually fund it). Not only would this provide an existence proof, but you should also gain some insight into the workflow and the person-hours to accomplish the task.
Here is a pipeline algorithm that I just published as the goto example of a long-short equity strategy. I'm sure it will go through many improvements as the public eye turns to it, but it should at least be a start. It's tricky because we do want to publish algorithms that are 95% of the way done, so that users can take the last 5% and improve the strategies in many different uncorrelated ways. With long-short equity most of the work is in choosing good factors and factor ranking techniques. Unfortunately those are the type of signals that will disappear when shared publicly, but the actual machinery to trade within the algorithm should stay pretty consistent. If you're maybe looking to learn pipeline a bit, I would recommend going through Lectures 17 and 18, then looking at the algorithm.
I can say for certain we are working on the hedge fund. Even if you have strategies that aren't consistently winning the contest, we may be interested in an algorithm that can consistently do ok. Ultimately, my job as the one overseeing the lectures is to keep trying to make it easier so people don't have to spend as much time working on algorithms that may never pay off for them, and so we get more algorithms that do pay off in the long run.
O material deste site é fornecido apenas para fins informativos e não constitui uma oferta de venda, uma solicitação de compra ou uma recomendação ou endosso para qualquer segurança ou estratégia, nem constitui uma oferta de prestação de serviços de consultoria de investimento pela Quantopian. Além disso, o material não oferece nenhuma opinião em relação à adequação de qualquer segurança ou investimento específico. Nenhuma informação contida neste documento deve ser considerada como uma sugestão para se envolver ou abster-se de qualquer curso de ação relacionado ao investimento, já que nenhuma das empresas atacadas ou nenhuma das suas afiliadas está a comprometer-se a fornecer conselhos de investimento, atuar como conselheiro de qualquer plano ou entidade sujeito a A Lei de Segurança de Renda de Aposentadoria do Empregado de 1974, conforme alterada, conta de aposentadoria individual ou anuidade de aposentadoria individual, ou dar conselhos em capacidade fiduciária em relação aos materiais aqui apresentados. Se você é um aposentadorio individual ou outro investidor, entre em contato com seu consultor financeiro ou outro fiduciário não relacionado a Quantopian sobre se qualquer idéia, estratégia, produto ou serviço de investimento descrito aqui pode ser apropriado para suas circunstâncias. Todos os investimentos envolvem risco, incluindo perda de principal. A Quantopian não oferece garantias sobre a precisão ou integridade das opiniões expressas no site. Os pontos de vista estão sujeitos a alterações e podem ter se tornado pouco confiáveis por vários motivos, incluindo mudanças nas condições do mercado ou nas circunstâncias econômicas.
I start to implement pair trading backtesting in research environment instead of IDE. The main reason is to automatic run multiple pairs performance analysis before I jump into IDE for full backtest. Another reason for this work is to do further analysis for returns from many pairs.
I am wondering where I can find the example of backtesting in research environment to start with. Any comment is very appreciated.
In your research environment there should be a 'Tutorials and Documentation' pasta. Inside the folder should be a notebook with the title 'Tutorial (Advanced) - Backtesting with Zipline'. Make a copy of that and let me know if that's enough to get you started.
O material deste site é fornecido apenas para fins informativos e não constitui uma oferta de venda, uma solicitação de compra ou uma recomendação ou endosso para qualquer segurança ou estratégia, nem constitui uma oferta de prestação de serviços de consultoria de investimento pela Quantopian. Além disso, o material não oferece nenhuma opinião em relação à adequação de qualquer segurança ou investimento específico. Nenhuma informação contida neste documento deve ser considerada como uma sugestão para se envolver ou abster-se de qualquer curso de ação relacionado ao investimento, já que nenhuma das empresas atacadas ou nenhuma das suas afiliadas está a comprometer-se a fornecer conselhos de investimento, atuar como conselheiro de qualquer plano ou entidade sujeito a A Lei de Segurança de Renda de Aposentadoria do Empregado de 1974, conforme alterada, conta de aposentadoria individual ou anuidade de aposentadoria individual, ou dar conselhos em capacidade fiduciária em relação aos materiais aqui apresentados. Se você é um aposentadorio individual ou outro investidor, entre em contato com seu consultor financeiro ou outro fiduciário não relacionado a Quantopian sobre se qualquer idéia, estratégia, produto ou serviço de investimento descrito aqui pode ser apropriado para suas circunstâncias. Todos os investimentos envolvem risco, incluindo perda de principal. A Quantopian não oferece garantias sobre a precisão ou integridade das opiniões expressas no site. Os pontos de vista estão sujeitos a alterações e podem ter se tornado pouco confiáveis por vários motivos, incluindo mudanças nas condições do mercado ou nas circunstâncias econômicas.
May 28 algo falls below benchmark if extended to date and -43% PvR with default slippage and commissions, tanking thru 2018.
Hope it can be rescued b/c it shows good potential.
The example strategies cheat and run on the same timeframe over which we did research and found the securities to be cointegrated. In a real strategy you'd want to find pairs that were cointegrated into the future and not just historically cointegrated. The template should stay largely the same, so it's an issue of swapping in new securities that you have statistical evidence will stay cointegrated.
O material deste site é fornecido apenas para fins informativos e não constitui uma oferta de venda, uma solicitação de compra ou uma recomendação ou endosso para qualquer segurança ou estratégia, nem constitui uma oferta de prestação de serviços de consultoria de investimento pela Quantopian. Além disso, o material não oferece nenhuma opinião em relação à adequação de qualquer segurança ou investimento específico. Nenhuma informação contida neste documento deve ser considerada como uma sugestão para se envolver ou abster-se de qualquer curso de ação relacionado ao investimento, já que nenhuma das empresas atacadas ou nenhuma das suas afiliadas está a comprometer-se a fornecer conselhos de investimento, atuar como conselheiro de qualquer plano ou entidade sujeito a A Lei de Segurança de Renda de Aposentadoria do Empregado de 1974, conforme alterada, conta de aposentadoria individual ou anuidade de aposentadoria individual, ou dar conselhos em capacidade fiduciária em relação aos materiais aqui apresentados. Se você é um aposentadorio individual ou outro investidor, entre em contato com seu consultor financeiro ou outro fiduciário não relacionado a Quantopian sobre se qualquer idéia, estratégia, produto ou serviço de investimento descrito aqui pode ser apropriado para suas circunstâncias. Todos os investimentos envolvem risco, incluindo perda de principal. A Quantopian não oferece garantias sobre a precisão ou integridade das opiniões expressas no site. Os pontos de vista estão sujeitos a alterações e podem ter se tornado pouco confiáveis por vários motivos, incluindo mudanças nas condições do mercado ou nas circunstâncias econômicas.
Could you post a tutorial on calibrating an Ornstein Uhlenbeck process for mean reverting series residuals?
We've added a lecture on this to our queue. No idea when we might currently get to it, but it's on there.
O material deste site é fornecido apenas para fins informativos e não constitui uma oferta de venda, uma solicitação de compra ou uma recomendação ou endosso para qualquer segurança ou estratégia, nem constitui uma oferta de prestação de serviços de consultoria de investimento pela Quantopian. Além disso, o material não oferece nenhuma opinião em relação à adequação de qualquer segurança ou investimento específico. Nenhuma informação contida neste documento deve ser considerada como uma sugestão para se envolver ou abster-se de qualquer curso de ação relacionado ao investimento, já que nenhuma das empresas atacadas ou nenhuma das suas afiliadas está a comprometer-se a fornecer conselhos de investimento, atuar como conselheiro de qualquer plano ou entidade sujeito a A Lei de Segurança de Renda de Aposentadoria do Empregado de 1974, conforme alterada, conta de aposentadoria individual ou anuidade de aposentadoria individual, ou dar conselhos em capacidade fiduciária em relação aos materiais aqui apresentados. Se você é um aposentadorio individual ou outro investidor, entre em contato com seu consultor financeiro ou outro fiduciário não relacionado a Quantopian sobre se qualquer idéia, estratégia, produto ou serviço de investimento descrito aqui pode ser apropriado para suas circunstâncias. Todos os investimentos envolvem risco, incluindo perda de principal. A Quantopian não oferece garantias sobre a precisão ou integridade das opiniões expressas no site. Os pontos de vista estão sujeitos a alterações e podem ter se tornado pouco confiáveis por vários motivos, incluindo mudanças nas condições do mercado ou nas circunstâncias econômicas.
Ages ago I posted, perhaps as anonymole, that a "pair" needn't be made of only two securities. In fact, the whole "we only allow low beta strats" mantra is pretty much an argument that all strategies should be a variation of a pairs strat. That is, over all, a market neutral position is best.
Taking this further however, and applying a more formal model to the pairs strategy (that the security set have a "story" attached to it) I wonder if the two halves of the pair would do better as independent baskets of securities. That if one approached a pairs strategy with the mind to match up two behaviorally opposed baskets of securities that instead of trying to search all pair combinations looking for all the super-great-marvelous attributes a pair should have, that instead, one determine the two sides of the pair coin and fill each side with the most appropriately identified securities -- for each side.
A simplistic model might be described thusly:
Equities which cycle up in the spring/summer and down in the fall/winter would be bundled together and set against equities which cycle oppositely (down in the summer, up in the winter).
No doubt there are more interesting or undiscovered cycles that exist. My point is that rather than identify securities that yin and yang, one discover technical, or macro, or fundamental classifications which zig when the other zags. Then find securities which fit each of those baskets of behavior.
This is a very interesting idea and definitely something that professional quants do. At the core we just want two assets on either side of a pair, and a portfolio of assets will do just as well as a single equity. There are probably pros and cons of each method, but the idea of using a basket of things rather than a single thing can greatly reduce your position concentration risk and lead to a better algorithm. I'd say it's worth research. You'd still likely want a few different pairs of baskets as each would smooth out the return curve of the other and produce a lower volatility algorithm.
O material deste site é fornecido apenas para fins informativos e não constitui uma oferta de venda, uma solicitação de compra ou uma recomendação ou endosso para qualquer segurança ou estratégia, nem constitui uma oferta de prestação de serviços de consultoria de investimento pela Quantopian. Além disso, o material não oferece nenhuma opinião em relação à adequação de qualquer segurança ou investimento específico. Nenhuma informação contida neste documento deve ser considerada como uma sugestão para se envolver ou abster-se de qualquer curso de ação relacionado ao investimento, já que nenhuma das empresas atacadas ou nenhuma das suas afiliadas está a comprometer-se a fornecer conselhos de investimento, atuar como conselheiro de qualquer plano ou entidade sujeito a A Lei de Segurança de Renda de Aposentadoria do Empregado de 1974, conforme alterada, conta de aposentadoria individual ou anuidade de aposentadoria individual, ou dar conselhos em capacidade fiduciária em relação aos materiais aqui apresentados. Se você é um aposentadorio individual ou outro investidor, entre em contato com seu consultor financeiro ou outro fiduciário não relacionado a Quantopian sobre se qualquer idéia, estratégia, produto ou serviço de investimento descrito aqui pode ser apropriado para suas circunstâncias. Todos os investimentos envolvem risco, incluindo perda de principal. A Quantopian não oferece garantias sobre a precisão ou integridade das opiniões expressas no site. Os pontos de vista estão sujeitos a alterações e podem ter se tornado pouco confiáveis por vários motivos, incluindo mudanças nas condições do mercado ou nas circunstâncias econômicas.
I have to run an errand, so I only have five minutes, but hopefully I can be clear in that time.
To demonstrate the chops of an AI system, I created an algorithm that can represent the small changes in stocks price, as the sum of a set of ETFs. For example, with MSFT one might have XLK, XLY, FXE, FXI, and some others.
I can show that the typical price movements during a day can be represented in this way. However, when there is specific news, then it is no longer true, if the news is strong.
What I believe this shows is that instead of things "returning to the mean" they are in fact not moving arbitrarily and so, if they return to the mean, it is because one of the underlying components in fact moved. (Of all the underlying components, usually only one or two have news, and the rest are balancing each other out, once the price has adjusted.)
How might one design a trading platform for this as even if you do know it is the sum of other waveforms that are causing one waveform, one still doesn't know what causes them to move until after the fact.
(the reduction in influence is 1/1.6 when looking at the components, so after a couple of feedback loops, the influence is not measurable. Thanks, and sorry for the hurried note,
Have you read Algorithmic Trading written by Ernie Chan? For sure you read it, I have a question: in fact I am not good in programming and working with Matlab, I am really interested in Currency cross rate part of the book and I want to implement the positions in live trading but I don't know how to do that in fact I can't understand what the numbers as positions mean! If somebody can guide me I'm really appreciated.
Not entirely sure I'm understanding your thesis but it seems that you've created an expression that models the returns of a specific stock from it's sector exposures. This is actually a common risk modeling tactic, check out my notebook here. To build a trading strategy off of this I would take your hypothesis about changing news and use that to alter the coefficients of your model. A cool place to start would be to check out the lectures on factor modeling and then maybe look at some news/sentiment data sets to see if you can find any anomalies.
O material deste site é fornecido apenas para fins informativos e não constitui uma oferta de venda, uma solicitação de compra ou uma recomendação ou endosso para qualquer segurança ou estratégia, nem constitui uma oferta de prestação de serviços de consultoria de investimento pela Quantopian. Além disso, o material não oferece nenhuma opinião em relação à adequação de qualquer segurança ou investimento específico. Nenhuma informação contida neste documento deve ser considerada como uma sugestão para se envolver ou abster-se de qualquer curso de ação relacionado ao investimento, já que nenhuma das empresas atacadas ou nenhuma das suas afiliadas está a comprometer-se a fornecer conselhos de investimento, atuar como conselheiro de qualquer plano ou entidade sujeito a A Lei de Segurança de Renda de Aposentadoria do Empregado de 1974, conforme alterada, conta de aposentadoria individual ou anuidade de aposentadoria individual, ou dar conselhos em capacidade fiduciária em relação aos materiais aqui apresentados. Se você é um aposentadorio individual ou outro investidor, entre em contato com seu consultor financeiro ou outro fiduciário não relacionado a Quantopian sobre se qualquer idéia, estratégia, produto ou serviço de investimento descrito aqui pode ser apropriado para suas circunstâncias. Todos os investimentos envolvem risco, incluindo perda de principal. A Quantopian não oferece garantias sobre a precisão ou integridade das opiniões expressas no site. Os pontos de vista estão sujeitos a alterações e podem ter se tornado pouco confiáveis por vários motivos, incluindo mudanças nas condições do mercado ou nas circunstâncias econômicas.
That is close. It models the returns to within a few cents usually, at any moment in time, depending on the stock and its volatility as a sum of its sectors. (except when it has specific news.) What I envision behind it is a large set of funds using NLP to invest by sector based on news. Because they are so large, then they tend to swamp out the market during normal times.
I can also show that stock prices changes are directly proportional to the sum of the underlying sectors information, for most time periods. For example, the price changes for three months show this and also for three weeks, which is a bit chaos like, as it would seem they wouldnt be so perfectly in tune. Anyway, with this I can sort stocks by their overall market efficiency (the more efficient you are, the more you sync with the relationship stated above).
I also believe that there are huge funds that are interested in doing nothing more than treading water (as one possible explanation) and they move their money around the world, just trying to stay even, and so the result is that at any given time, the sum of everything stays near zero. (when one thing goes up somewhere, something else somewhere else goes down.)
These relationships also break down during periods of very high volatility such as fall 2018.
There are other things I am able to quantify, but again have no idea how to use. When information about a specific stock or sector hits the market, it is my observation that the more objective the information, the faster the market responds, and the more subjective it is, the slower the market responds.
For example, when Ackman says that HLF is a pyramid scheme, then it can sometimes be hours, and sometimes even days before that news is no longer affecting the price of the stock, but when an analyst upgrades or downgrades a stock, that is more objective and the entire price adjustment is over in fifteen minutes. (If you subtract out market movements then an analysts announcement looks like a log curve, with most of the action in the beginning and a bit of a ringing at the last.)
Again, this all happens too fast to be of use, and it is after the fact that I can say, "That was subjective."
I don't think I am able to alter the coefficients as you suggest. I am using a hard coded take on a system of recursive polynomials for my modeling, so there are billions of coefficients.
Hi, I have a quick and possibly dumb question. Why did you use the ratio instead of the difference between S1 and S2 in the Quantopain pairs trading lecture? In the co-integration lecture, you use the difference instead. In other sources, they use the difference as well.
There's an updated notebook, algorithm, and video available on the lecture series page.
O material deste site é fornecido apenas para fins informativos e não constitui uma oferta de venda, uma solicitação de compra ou uma recomendação ou endosso para qualquer segurança ou estratégia, nem constitui uma oferta de prestação de serviços de consultoria de investimento pela Quantopian. Além disso, o material não oferece nenhuma opinião em relação à adequação de qualquer segurança ou investimento específico. Nenhuma informação contida neste documento deve ser considerada como uma sugestão para se envolver ou abster-se de qualquer curso de ação relacionado ao investimento, já que nenhuma das empresas atacadas ou nenhuma das suas afiliadas está a comprometer-se a fornecer conselhos de investimento, atuar como conselheiro de qualquer plano ou entidade sujeito a A Lei de Segurança de Renda de Aposentadoria do Empregado de 1974, conforme alterada, conta de aposentadoria individual ou anuidade de aposentadoria individual, ou dar conselhos em capacidade fiduciária em relação aos materiais aqui apresentados. Se você é um aposentadorio individual ou outro investidor, entre em contato com seu consultor financeiro ou outro fiduciário não relacionado a Quantopian sobre se qualquer idéia, estratégia, produto ou serviço de investimento descrito aqui pode ser apropriado para suas circunstâncias. Todos os investimentos envolvem risco, incluindo perda de principal. A Quantopian não oferece garantias sobre a precisão ou integridade das opiniões expressas no site. Os pontos de vista estão sujeitos a alterações e podem ter se tornado pouco confiáveis por vários motivos, incluindo mudanças nas condições do mercado ou nas circunstâncias econômicas.
And as a response to pandasaurus' question, which I unfortunately just saw, we have removed the ratio as it was a typo in the lecture.
O material deste site é fornecido apenas para fins informativos e não constitui uma oferta de venda, uma solicitação de compra ou uma recomendação ou endosso para qualquer segurança ou estratégia, nem constitui uma oferta de prestação de serviços de consultoria de investimento pela Quantopian. Além disso, o material não oferece nenhuma opinião em relação à adequação de qualquer segurança ou investimento específico. Nenhuma informação contida neste documento deve ser considerada como uma sugestão para se envolver ou abster-se de qualquer curso de ação relacionado ao investimento, já que nenhuma das empresas atacadas ou nenhuma das suas afiliadas está a comprometer-se a fornecer conselhos de investimento, atuar como conselheiro de qualquer plano ou entidade sujeito a A Lei de Segurança de Renda de Aposentadoria do Empregado de 1974, conforme alterada, conta de aposentadoria individual ou anuidade de aposentadoria individual, ou dar conselhos em capacidade fiduciária em relação aos materiais aqui apresentados. Se você é um aposentadorio individual ou outro investidor, entre em contato com seu consultor financeiro ou outro fiduciário não relacionado a Quantopian sobre se qualquer idéia, estratégia, produto ou serviço de investimento descrito aqui pode ser apropriado para suas circunstâncias. Todos os investimentos envolvem risco, incluindo perda de principal. A Quantopian não oferece garantias sobre a precisão ou integridade das opiniões expressas no site. Os pontos de vista estão sujeitos a alterações e podem ter se tornado pouco confiáveis por vários motivos, incluindo mudanças nas condições do mercado ou nas circunstâncias econômicas.
Greetings Quantopian Community,
I was at the NYC Event on Pairs Trading, and the current example algorithm is deprecated, such that one cannot deploy it in live trading. With this fix, users can now deploy the algorithm in live trading. The fix is hosted as a pull request on github--thanks.
Muito obrigado. Could you please submit your PR to the following repo? It's where we store lectures and examples. Doesn't quite fit in the current form of zipline.
O material deste site é fornecido apenas para fins informativos e não constitui uma oferta de venda, uma solicitação de compra ou uma recomendação ou endosso para qualquer segurança ou estratégia, nem constitui uma oferta de prestação de serviços de consultoria de investimento pela Quantopian. Além disso, o material não oferece nenhuma opinião em relação à adequação de qualquer segurança ou investimento específico. Nenhuma informação contida neste documento deve ser considerada como uma sugestão para se envolver ou abster-se de qualquer curso de ação relacionado ao investimento, já que nenhuma das empresas atacadas ou nenhuma das suas afiliadas está a comprometer-se a fornecer conselhos de investimento, atuar como conselheiro de qualquer plano ou entidade sujeito a A Lei de Segurança de Renda de Aposentadoria do Empregado de 1974, conforme alterada, conta de aposentadoria individual ou anuidade de aposentadoria individual, ou dar conselhos em capacidade fiduciária em relação aos materiais aqui apresentados. Se você é um aposentadorio individual ou outro investidor, entre em contato com seu consultor financeiro ou outro fiduciário não relacionado a Quantopian sobre se qualquer idéia, estratégia, produto ou serviço de investimento descrito aqui pode ser apropriado para suas circunstâncias. Todos os investimentos envolvem risco, incluindo perda de principal. A Quantopian não oferece garantias sobre a precisão ou integridade das opiniões expressas no site. Os pontos de vista estão sujeitos a alterações e podem ter se tornado pouco confiáveis por vários motivos, incluindo mudanças nas condições do mercado ou nas circunstâncias econômicas.
Thanks, Delaney. I submitted the PR to the specified branch.
Obrigado! Delaney. I am finishing my graduation thesis these days, Your work may help me a lot.
That's great to hear, Dzi. Hope it goes well!
O material deste site é fornecido apenas para fins informativos e não constitui uma oferta de venda, uma solicitação de compra ou uma recomendação ou endosso para qualquer segurança ou estratégia, nem constitui uma oferta de prestação de serviços de consultoria de investimento pela Quantopian. Além disso, o material não oferece nenhuma opinião em relação à adequação de qualquer segurança ou investimento específico. Nenhuma informação contida neste documento deve ser considerada como uma sugestão para se envolver ou abster-se de qualquer curso de ação relacionado ao investimento, já que nenhuma das empresas atacadas ou nenhuma das suas afiliadas está a comprometer-se a fornecer conselhos de investimento, atuar como conselheiro de qualquer plano ou entidade sujeito a A Lei de Segurança de Renda de Aposentadoria do Empregado de 1974, conforme alterada, conta de aposentadoria individual ou anuidade de aposentadoria individual, ou dar conselhos em capacidade fiduciária em relação aos materiais aqui apresentados. Se você é um aposentadorio individual ou outro investidor, entre em contato com seu consultor financeiro ou outro fiduciário não relacionado a Quantopian sobre se qualquer idéia, estratégia, produto ou serviço de investimento descrito aqui pode ser apropriado para suas circunstâncias. Todos os investimentos envolvem risco, incluindo perda de principal. A Quantopian não oferece garantias sobre a precisão ou integridade das opiniões expressas no site. Os pontos de vista estão sujeitos a alterações e podem ter se tornado pouco confiáveis por vários motivos, incluindo mudanças nas condições do mercado ou nas circunstâncias econômicas.
I have question in regards to high frequency pairs trading using bid/ask price. One thing that I noticed is during an entry signal if I'm supposed to go long in one and short the other, the Long position that I enter would be using the ask price and this ask price normally is higher than the bid price, so when my exit signals to exit, my bid price that I close my position at will often cause me to loose than make money. What are some of the ways to prevent this from happening or what are some strategies that goes hand in hand with trading high frequently with pairs strategy. Further, how are limit orders used with the bid/ask price.
If you need to make the spread in order for the strategy to be profitable, then you are squarely competing with high-frequency market makers, and it's a whole different ball game. You are unlikely to win. If you have control over the specific order types you send, you could attempt to use mid-point pegs or something, but as soon as you admit any sort of limit orders where execution is not immediate, you now need to be concerned about being exposed unhedged, which is something that you'll need to backtest. (not easy either). What some people do is try and rest or peg an order for the less liquid leg, and attempt to save some of the cost of the wider spread (though again, these days, you'll probably just get adversely selected for no net gain), and then as soon as that fills, you aggressively execute the hedge leg across the narrower spread.
How does one use both bid and ask z score in high frequency trading? For simplicity, I can understand using z score, but when it comes to using both bid and ask price z score, I have trouble picturing how it is used.
Simon's right, mid-frequency strategies generally should be fairly robust to bid-ask spreads. If they're not the edge is probably too small to be consistently profitable. For high frequency trading you do have to consider the bid and ask in many different ways, as your trading will be very sensitive to movements in both. How exactly you use the data would depend on your model.
O material deste site é fornecido apenas para fins informativos e não constitui uma oferta de venda, uma solicitação de compra ou uma recomendação ou endosso para qualquer segurança ou estratégia, nem constitui uma oferta de prestação de serviços de consultoria de investimento pela Quantopian. Além disso, o material não oferece nenhuma opinião em relação à adequação de qualquer segurança ou investimento específico. Nenhuma informação contida neste documento deve ser considerada como uma sugestão para se envolver ou abster-se de qualquer curso de ação relacionado ao investimento, já que nenhuma das empresas atacadas ou nenhuma das suas afiliadas está a comprometer-se a fornecer conselhos de investimento, atuar como conselheiro de qualquer plano ou entidade sujeito a A Lei de Segurança de Renda de Aposentadoria do Empregado de 1974, conforme alterada, conta de aposentadoria individual ou anuidade de aposentadoria individual, ou dar conselhos em capacidade fiduciária em relação aos materiais aqui apresentados. Se você é um aposentadorio individual ou outro investidor, entre em contato com seu consultor financeiro ou outro fiduciário não relacionado a Quantopian sobre se qualquer idéia, estratégia, produto ou serviço de investimento descrito aqui pode ser apropriado para suas circunstâncias. Todos os investimentos envolvem risco, incluindo perda de principal. A Quantopian não oferece garantias sobre a precisão ou integridade das opiniões expressas no site. Os pontos de vista estão sujeitos a alterações e podem ter se tornado pouco confiáveis por vários motivos, incluindo mudanças nas condições do mercado ou nas circunstâncias econômicas.
You can imagine that the spread is a synthetic asset. For instance, X = 1L -1S so a single unit of X is long one unit of L and short one unit of S. If you need to buy one unit of X immediately, you will buy at the ask of L and sell at the bid of S. If you need to sell one unit of X, you will sell at the bid of L and buy at the ask of S.
You can then easily calculate the bid and ask for X, you have just two "z-scores" to deal with. Then, if you like, you can delay buying until the X_ask_zscore < threshold, and delay selling until the X_bid_zscore > exit_threshold.
Espero que isto ajude.
I had a chance to see this notebook before and I would recommend it to everyone here. Lots of amazing info can be found inside.
O material deste site é fornecido apenas para fins informativos e não constitui uma oferta de venda, uma solicitação de compra ou uma recomendação ou endosso para qualquer segurança ou estratégia, nem constitui uma oferta de prestação de serviços de consultoria de investimento pela Quantopian. Além disso, o material não oferece nenhuma opinião em relação à adequação de qualquer segurança ou investimento específico. Nenhuma informação contida neste documento deve ser considerada como uma sugestão para se envolver ou abster-se de qualquer curso de ação relacionado ao investimento, já que nenhuma das empresas atacadas ou nenhuma das suas afiliadas está a comprometer-se a fornecer conselhos de investimento, atuar como conselheiro de qualquer plano ou entidade sujeito a A Lei de Segurança de Renda de Aposentadoria do Empregado de 1974, conforme alterada, conta de aposentadoria individual ou anuidade de aposentadoria individual, ou dar conselhos em capacidade fiduciária em relação aos materiais aqui apresentados. Se você é um aposentadorio individual ou outro investidor, entre em contato com seu consultor financeiro ou outro fiduciário não relacionado a Quantopian sobre se qualquer idéia, estratégia, produto ou serviço de investimento descrito aqui pode ser apropriado para suas circunstâncias. Todos os investimentos envolvem risco, incluindo perda de principal. A Quantopian não oferece garantias sobre a precisão ou integridade das opiniões expressas no site. Os pontos de vista estão sujeitos a alterações e podem ter se tornado pouco confiáveis por vários motivos, incluindo mudanças nas condições do mercado ou nas circunstâncias econômicas.
Hey Simon. thanks for that last post. I've been thinking through the logic behind that, but I do have some questions. Hope you don't mind explaining or expanding on it a little. 1) If I understood you correctly you mean X being the spread between a pair? in other words one unit of X immediately to be traded immediately, I would think that you will buy at the ask of X rather than L to be immediate wouldn't you? One problem that I would encounter by buying one unit of X at the ask price of L would be that the ask price of L may not be the lowest ask price of X and therefore may cause me to still queue to purchase the unit of X or not even fill. Can you say a little more in regards to this?
2) Further, there is one concept that I'm having a hard time to understand. Let's say that my Z score > entry threshold of +2. I would short L by one unit by selling one unit of L at the bid price of L and go long one unit of Y at the ask price of Y. Assuming hedge ratio is 1 and all. When my Z score < exit threshold of say 0.2. I would then exit my short and long position of the pair. The issue that I would encounter assuming no fees and all is that I would loose money during these trades. I'm having a hard time understanding why that would be if my Z score returned to or close to mean. Is the reason behind this due to the fact that the volatility of the bid/ask price may not be high enough to allow the difference in the entry and exit bid/ask spread price at the start and end of the transaction to pull far enough to earn money?
Please take a look at the last part of the page for this link that shows the true correlations, which are arrived at by saying "from the point of view of a pairs trader, how correlated are these tickers."
If you know how to subtract out the part of the market that floats all boats, to be left only with the information pertaining to neutral, there are extreme correlations. XLK is the ticker used in the example, but there are a thousand I could have used. When you know how to subtract out all but the neutral information, the market becomes completely different in how it appears.
Scroll to the very bottom of the article and look at the two tables with correlation information. These numbers are this way because there is so much interest in pairs trading that it tends to swamp things out. It is even more pronounced in Europe.
1) I think you are getting a bit confused; X is not a real thing, it's a synthetic asset formed by the basket of L and S. X has a price to buy and a price to sell which you calculate from the bids and asks of the components. If you cross the spread, generally, you trade immediately in small enough size. You only have uncertainty about fills if you try to earn the spread. That gets much more difficult.
2) Maybe. If your trades are not making money, I mean, that's a big problem. I can't answer why they are not making money. It could be transaction costs like the bid/ask spreads, you should analyze the volatility of your baskets as a function of the bid/ask spreads you have to pay. If you have to cross four 5-cent spreads to try and capture a spread mean-reversion of 2 cents, well yeah you are going to have problems. A bigger problem I found was that mean reversion happens one of two ways; either the asset reverts to the mean, or the mean converges with the asset (assuming you are constantly recomputing the mean, which seems to be common practice). In both cases your z-score goes back to zero, but only in the first case do you make any money.
@daniel I read your article, the correlations at the end, are those of prices, or returns ?
Thanks for clearing that up for me. The idea of using synthetic assets is relatively new to me. I went and researched it a little and noticed that it is often used to capture streams of cash flow. I'm currently trying to perform residual pairs trading with Chinese Future Contracts. As I research it for the use of Futures, I don’t really find much articles or explanations. Is it applicable to Futures?
At the same time, I'm relatively new at this and trying to go through the lectures and stuff to learn. When you say I should analyze the volatility of my baskets as a function of the bid/ask spreads. Do you know where I can find a lecture that discuss this further? Sorry to ask some fundamental questions. One thing I notice in my data is that the bid/ask spread is really small and by small the it is just a spread of one tick of the futures contract; while the Volume for that tick is also small just around 80 or less contracts for either bid or ask.
The correlations are about prices, but just a subset.
(I have edited this down, as compared to what you probably have in email. Please don't copy anything from the email onto the board.)
James - maybe? You need pairs/baskets with enough variance to profitably trade the mean reversion. There tends to be a spectrum; structurally correlated assets (like ETF vs their component baskets) are perfect to trade, so perfect, that everyone does it and therefore the deviations are probably less than the spread. Then there's really shitty pairs which you find doing brute force analysis of the stock market. These have lots of variance, but they probably don't converge, and/or the relationship is totally spurious. Read closely Aaron Brown's posts on this thread. You want something in the middle.
Danial - I am not sure how useful correlations of prices of any kind are ? They are bound to be super high.
By itself I don't believe there is any one thing that is useful for a neutral strategy.
My approach is to look at the market as being represented by several hundred core waveform, and similar to the idea of Fourier Transform, you can use these fundamental waveform to create the 4000 heaviest played stocks. So, basically everything I believe about the market is based on the idea of correlations, as this is what I used as one of the first steps to find those wave forms. (which are not easy to find.)
Consider if you have Tickers AAA and BBB, and they are two similar stocks.
AAA might have as its composite the waves A, B, C, D, E, F, G, H, I, J, and BBB may have D, E, F, G, H, I, J, K, L.
During the times that there is little to no activity in the components A, B, C, K, L then the two tickers would be nearly perfectly correlated. But if suddenly component A had news (for example), then the perfect correlations would no longer hold, since stock BBB does not have an A component waveform..
If you apply the above to the idea of mean reversion, then you can see what I believe the mean reversion strategy is actually about.
In my opinion the best way to play a neutral strategy would be to devise a portfolio that is about the underlying fundamental wave components..
And in the interest of completeness, I will mention that in the above examples, waves A, B, C, etc are also made of composite waves, (and those composites . ) as the market is self referencing. The several hundred are at the bottom of the self referencing, and are something that exists in theory, that I believe I could "easily" find, but have not spent the time and energy to do so as of this date.
I also believe that if I had data for all the major markets of the world and was able to deduce the underlying component waves for those instruments that are heavily played by the collectively speaking, multi-trillion dollar funds, that the sum of these waves would (except for inflation) most of these times sum to be zero.
Some researchers generate the log price series of two equities with the daily close. Then the spread series is estimated using regression analysis based on log price series data. For equities X and Y, they run linear regression over the log price series and get the coefficient β.
Any reason they use log price series instead?
Desculpe, algo deu errado. Tente novamente ou contate-nos enviando comentários.
Você enviou um ticket de suporte com sucesso.
Nossa equipe de suporte estará em contato em breve.
O material deste site é fornecido apenas para fins informativos e não constitui uma oferta de venda, uma solicitação de compra ou uma recomendação ou endosso para qualquer segurança ou estratégia, nem constitui uma oferta de prestação de serviços de consultoria de investimento pela Quantopian.
Além disso, o material não oferece nenhuma opinião em relação à adequação de qualquer segurança ou investimento específico. Nenhuma informação contida neste documento deve ser considerada como uma sugestão para se envolver ou abster-se de qualquer curso de ação relacionado ao investimento, já que nenhuma das empresas atacadas ou nenhuma das suas afiliadas está a comprometer-se a fornecer conselhos de investimento, atuar como conselheiro de qualquer plano ou entidade sujeito a A Lei de Segurança de Renda de Aposentadoria do Empregado de 1974, conforme alterada, conta de aposentadoria individual ou anuidade de aposentadoria individual, ou dar conselhos em capacidade fiduciária em relação aos materiais aqui apresentados. Se você é um aposentadorio individual ou outro investidor, entre em contato com seu consultor financeiro ou outro fiduciário não relacionado a Quantopian sobre se qualquer idéia, estratégia, produto ou serviço de investimento descrito aqui pode ser apropriado para suas circunstâncias. Todos os investimentos envolvem risco, incluindo perda de principal. A Quantopian não oferece garantias sobre a precisão ou integridade das opiniões expressas no site. Os pontos de vista estão sujeitos a alterações e podem ter se tornado pouco confiáveis por vários motivos, incluindo mudanças nas condições do mercado ou nas circunstâncias econômicas.
O material deste site é fornecido apenas para fins informativos e não constitui uma oferta de venda, uma solicitação de compra ou uma recomendação ou endosso para qualquer segurança ou estratégia, nem constitui uma oferta de prestação de serviços de consultoria de investimento pela Quantopian.
Além disso, o material não oferece nenhuma opinião em relação à adequação de qualquer segurança ou investimento específico. Nenhuma informação contida neste documento deve ser considerada como uma sugestão para se envolver ou abster-se de qualquer curso de ação relacionado ao investimento, já que nenhuma das empresas atacadas ou nenhuma das suas afiliadas está a comprometer-se a fornecer conselhos de investimento, atuar como conselheiro de qualquer plano ou entidade sujeito a A Lei de Segurança de Renda de Aposentadoria do Empregado de 1974, conforme alterada, conta de aposentadoria individual ou anuidade de aposentadoria individual, ou dar conselhos em capacidade fiduciária em relação aos materiais aqui apresentados. Se você é um aposentadorio individual ou outro investidor, entre em contato com seu consultor financeiro ou outro fiduciário não relacionado a Quantopian sobre se qualquer idéia, estratégia, produto ou serviço de investimento descrito aqui pode ser apropriado para suas circunstâncias. Todos os investimentos envolvem risco, incluindo perda de principal. A Quantopian não oferece garantias sobre a precisão ou integridade das opiniões expressas no site. Os pontos de vista estão sujeitos a alterações e podem ter se tornado pouco confiáveis por vários motivos, incluindo mudanças nas condições do mercado ou nas circunstâncias econômicas.
Comments
Post a Comment